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COURSE INTRODUCTION 

 

Industrial Mathematics is a discipline that applies advanced analytical methods to help make 

better decisions. It employs techniques from mathematics, statistics, and computer science to 

solve complex problems in various industries. The course is of four credits and is divided into 12 

units. Each Unit is divided into sub topics. Each unit starts with a statement of objectives that 

outlines the goals we hope you will accomplish.  

The course provides a comprehensive introduction to the field of Operations Research (OR), 

focusing on the development and application of quantitative models to support decision-making 

in complex environments. Students will learn how to formulate, analyze, and solve problems 

using a variety of OR techniques.  

 

Course Outcomes: 

At the completion of the course, a student will be able to: 

1. Recall the linear programming problems by different methods. Illustrate the concept of 

convex set & extreme points. 

2. Explain the relationships between the primal and dual problems, and to understand 

sensitivity analysis. 

3. Apply duality and dual simplex method. 

4. Analyze transportation models and find solutions for transportation problems. 

5. Evaluate assignment problems and methods for solving it. 

6. Create linear programming models of real-life situations. Learn about the applications to 

transportation, assignment in the real world. 
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The content we have utilized is solely educational in nature. The copyright proprietors of the 

materials reproduced in this book have been tracked down as much as possible. The editors 

apologize for any violation that may have happened, and they will be happy to rectify any such 

material in later versions of this book. 

 

 

 



UNIT - 1
Introduction to Finite Difference Schemes

Learning objectives
Differential  equation  solutions  can  be  approximated  numerically  using  finite  difference

approaches.  Studying  finite  difference  schemes  usually  aims  to  teach  students  about

discretization, numerical methods, understanding differential equations, and finite differences,

among other things.

Structure
1.1 Basics of Partial Differential Equations

1.2 Overview of Finite Difference Method

1.3 Explicit and Implicit Schemes

1.4 Summary

1.5 Keywords

1.6 Self Assessment questions

1.7 Case Study

1.8 References
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1.1 Basics of Partial Differential Equations
Partial Differential Equations (PDEs) are equations that involve partial derivatives of functions

of  multiple  variables.  They  find  widespread  applications  in  various  fields  such  as  physics,

engineering, and finance. Here are the key concepts covered in this section:

Definition: PDEs are classified based on their order, linearity, and homogeneity. Common types

include elliptic, parabolic, and hyperbolic equations.

Classification of Second Order Equations:
The general linear partial differential equation of the second order in two independent variables

is of the form

Such a partial differential equation is said to be

Examples of PDEs: Examples include the heat equation, wave equation, and Laplace's equation.

Each type of equation represents different physical phenomena and has distinct properties.

1.2 Overview of Finite Difference Method
Finite Difference Method (FDM) is numerical techniques used to solve differential equations by

discretizing  the  domain  into  a  grid  and  approximating  derivatives  using  finite  difference

approximations. 

Discretization: The continuous domain is divided into discrete points or nodes, forming a grid.

Differential operators are approximated using finite difference formulas at these grid points.

Derivation of Finite Difference Equations: By substituting finite difference approximations into

the original  differential  equation,  a  system of  algebraic  equations  is  obtained,  which can be

solved numerically.

1.3 Explicit and Implicit Schemes
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Explicit  and Implicit  Finite  Difference Schemes are two common approaches to  solving the

discretized equations. They differ in how they treat the unknown values at the next time step.

Key points covered in this section include:

Explicit Schemes: In explicit schemes, the value at the next time step is computed explicitly in

terms of known values at the current time step. These schemes are easy to implement but may be

subject to stability limitations.

Implicit Schemes: Implicit schemes involve solving a system of equations at each time step,

where the unknown values at the next time step are implicit functions of both current and future

values. Implicit schemes are often unconditionally stable but require solving linear or nonlinear

equations, which can be computationally intensive. 

The universal first-order equation with degree n has the following form:

Example 1:
Form the partial differential equation by eliminating the arbitrary constants 

z=ax+by+a2+b2 .

Solution: 
                       Given  

z=ax+by+a2+b2  ...................(1) 

Differentiating (1) partially w.r.t. ‘x

                        ∂z/ ∂x = a

                         i.e., p = a                             ......................(2)

 Differentiating (1) partially w.r.t. ‘y’

                            ∂z/ ∂y = b

                               i.e., q = b                        .....................(3)

 From (2) and (3) a = p and b = q 

Substituting these values in (1),

We get, z = px + qy + p 2 + q 2.
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Example 2:
 Form the PDE by eliminating the arbitrary constants a and b  

                     z = (x + a)(y + b)

Solution:
 Given 

                           z = (x + a)(y + b) …………………(1)

 Differentiating (1) partially w.r.t. ‘x’ 

                                  ∂z /∂x = y + b

                              i.e., p = y + b......………………. (2) 

Differentiating (1) partially w.r.t. ‘y’ 

                                        ∂z/ ∂y = x + a

                                       i.e., q = x + a……..………. (3)

 From (2) and (3), x + a = q and y + b = p

 Substituting these values in (1),

We get, z = pq. 

Formation of partial differential equation by elimination of arbitrary Functions:
The  elimination  of  one  arbitrary  function  from  a  given  relation  gives  a  partial  differential

equation of first order while elimination of two arbitrary functions from a given relation gives a

second or higher order partial differential equation

 Example 3:
         Form PDE by eliminating arbitrary function f and g 

          z = f(x + ay) + g(x − ay).

Solution: Given

                        z = f(x + ay) + g(x − ay) ………….. (1)

 Differentiating (1) partially w.r.t ‘x’

                        ∂z/ ∂x = f ‘ (x + ay) + g‘ (x − ay)

                         i.e., p = f ‘ + g‘ ………….. (2) 

Differentiating (1) partially w.r.t ‘y’

                        ∂z/ ∂y = af’ (x + ay) – ag’(x − ay)

                         i.e., q = af’ – ag’ ………….. (3)
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 Differentiating (2) partially w.r.t ‘x’

                                          ∂ 2 z/ ∂x2 = f ’ ’+g’’

i .e . ,r=f ‘ ’+g‘’…………..(4)

 Differentiating (3) partially w.r.t ‘y’

                             ∂2 z /∂ y 2=a2 f ’ ’+a2 g ’’

i .e . ,t=a2( f ‘ ’+g‘ ’)……….(5)

Using (4), we get,  t = a2 r.

Lagrange’s Linear Equations: 
In  numerical  analysis,  Lagrange's  linear  equations  typically  refer  to  a  particular  method for

solving systems of linear equations.

One such method is Gaussian elimination with partial pivoting, often called the Gauss–Jordan

method. It's a systematic way to transform a system of linear equations into an equivalent system

with a triangular matrix, making it easier to solve.

Here's a basic outline of the Gauss-Jordan method:

1. Forward  Elimination:  Convert  the  system  of  equations  into  triangular  form  by

eliminating variables below the diagonal.

2. Back  Substitution:  Solve  for  the  variables  starting  from  the  bottom  equation  and

working upward.

Lagrange's equations might also refer to a formulation of linear equations within the context of

optimization problems, where Lagrange multipliers are used to incorporate constraints into the

objective function. This method involves setting up a system of linear equations based on the

conditions given by the Lagrange multipliers and then solving them to find the optimal solution.

Solution of Partial Differential Equations:

The  solution  of  partial  differential  equations  (PDEs)  is  a  vast  and  complex  topic  with

applications spanning across various fields such as physics, engineering, and mathematics. Here's

a brief overview:

1. Classification of PDEs: PDEs can be classified into various types based on their order,

linearity, and coefficients. Common types include:
5



o Linear  vs.  Nonlinear:  PDEs  are  linear  if  they  can  be  expressed  as  linear

combinations of the dependent variable and its partial derivatives. Otherwise, they

are nonlinear.

o Order:  The  order  of  a  PDE is  the  highest  order  of  derivative  present  in  the

equation.

o Elliptic,  Parabolic,  and  Hyperbolic  PDEs:  Depending  on  the  nature  of  the

principal part of the equation, PDEs can be classified into these three categories,

each with its own characteristic behavior.

2. Analytical Methods: Some PDEs can be solved analytically using techniques such as

separation of variables, integral transforms (e.g., Fourier transform, Laplace transform),

and method of characteristics. However, analytical solutions are often limited to simple

geometries and boundary conditions.

3. Numerical Methods: For many practical problems, analytical solutions are not feasible.

In such cases, numerical methods are employed. These include:

o Finite  Difference  Method  (FDM):  The  domain  is  discretized,  and  finite

difference  approximations  are  used  to  discretize  the  derivatives.  The resulting

system of algebraic equations is then solved iteratively.

o Finite Element Method (FEM): The domain is divided into smaller elements,

and  the  PDE  is  approximated  over  each  element  using  basis  functions.  The

resulting system of equations is solved numerically.

o Finite Volume Method (FVM): The domain is divided into control volumes, and

the integral form of the PDE is solved over each control volume.

Lagrange Multiplier Method:

The Lagrange multiplier method is a technique used in mathematical optimization to locate the

local maxima and minima of a function under equality constraints, or where the values of the

variables must precisely satisfy one or more equations. The fundamental concept is to rewrite the

problem  in  a  way  that  preserves  the  applicability  of  the  derivative  test  for  unconstrained

problems. Whether or not stationary points are maxima, minima, or saddle points depends on the

definiteness of the bordered Hessian matrix once those points have been determined from the

first-order required conditions. 
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Basic Concept:
Suppose we want to find the extrema (maximum or minimum) of a function f(x) subject to the

constraint g(x) = 0. The Lagrange Multiplier Method introduces an auxiliary variable, called the

Lagrange multiplier, to transform the constrained optimization problem into a form that can be

more easily analyzed.

Steps of the Lagrange Multiplier Method:

1. Form the Lagrangian: Define the Lagrangian function L(x , λ) as follows:

L(x,λ) = f(x)−λg(x)

Here, λ is the Lagrange multiplier.

2. Compute Partial Derivatives: Calculate the partial derivatives of L with respect to each

variable in x and the Lagrange multiplier λ.

3. Set Equations to Zero: Set these partial derivatives equal to zero to form a system of

equations:

∂L/∂x i = 0 for each i

∂L/∂λ = 0

 The first set of equations ensures that f(x) is stationary with respect to changes in x, while the

second equation enforces the constraint g(x) = 0.

4. Solve the System of Equations: Solve this system of equations to find the values of x

and λ that satisfy all the conditions.

Let's consider a simple example to illustrate the Lagrange Multiplier Method.

Example 4: Maximize f(x, y)=x2+y2 subject to the constraint g(x, y)=x+y−1=0.

1. Form the Lagrangian:

2. Compute Partial Derivatives:

3. Set Equations to Zero:
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2x−λ = 0 ⇒ λ = 2x

2y−λ = 0 ⇒ λ = 2y

x+y−1 = 0

4. Solve the System of Equations: 

From λ = 2x and λ = 2y, we get 2x = 2y ⇒ x = y.

Substitute x = y into the constraint x+y−1 = 0:

x+x−1 = 0 ⇒ 2x = 1 ⇒ x = 1/2, y = 1/2

Therefore, the maximum value of f(x, y)=x2+y2 subject to the constraint x+y = 1is attained at

(1/2,1/2).

1.4 Summary

A numerical method called the Finite Difference Method (FDM) uses difference equations to

approximate differential equations and solve them. It entails substituting finite differences for the

derivatives and discretizing the continuous domain into a grid of points. 

For example, the first derivative f’(x) at a point can be approximated by (f(x+h)−f(x))/h, where h

is the grid spacing.

1.5 Keywords

 Boundary Conditions

 Grid

 Explicit Scheme

 Implicit Scheme

 Finite Element Method

1.6 Self Assessment Questions
1. What is the fundamental idea behind finite difference schemes?

2. How do finite difference schemes approximate derivatives in differential equations?

3. Explain the significance of discretization in numerical methods.

4. What  are  the  key  steps  involved  in  implementing  a  finite  difference  scheme

computationally?
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5. Describe the data structures and algorithms commonly used in finite difference schemes.

1.7 Case Study
Thermal Analysis Using Finite Difference Schemes:
A  manufacturer  with  expertise  in  creating  high-end  electrical  products.  Ensuring  that  the

components of their gadgets work within acceptable temperature ranges to preserve maximum

performance  and  dependability  is  one  of  their  core  problems.  They  choose  to  use  thermal

analysis  finite  difference  techniques  as  a  solution  to  this  problem.

Question: Under different working situations, stimulate the temperature distribution inside the

electrical equipment. To optimize the design and cooling solutions, this entails assessing hotspot

locations, thermal gradients, and heat dissipation.

1.8 References
1. "Numerical Recipes: The Art of Scientific Computing" by William H. Press, Saul A.

Teukolsky, William T. Vetterling, and Brian P. Flannery.

2. "Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State

and Time-Dependent Problems" by Randall J. LeVeque.
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UNIT - 2
Finite Difference Schemes for Initial and Boundary Value Problems

Learning objectives
For starting and boundary value issues, learning objectives for finite difference schemes usually

include both theoretical knowledge and practical abilities. Knowing Finite Difference Methods

(FDM),  Numerical  Analysis,  Techniques  for  Discretization,  and  their  application  to  various

problems.

Structure
2.1 Forward-Time Central-Space (FTCS) Scheme

2.2 Backward Euler Scheme

2.3 Cranks-Nicolson Scheme

2.4 Alternating Direction Implicit (ADI) Methods

2.5 Summary

2.6 Keywords

2.7 Self Assessment Questions

2.8 Case Study

2.9 References
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2.1 Forward-Time Central-Space (FTCS) Scheme:
Finite  difference  schemes  are  numerical  methods  used  to  solve  differential  equations  by

approximating the derivatives with finite differences. These schemes are widely used for solving

initial value problems (IVPs) and boundary value problems (BVPs) in various fields of science

and engineering. 

Forward-Time Central-Space (FTCS) is a numerical method used to solve partial differential

equations, particularly the heat equation or other parabolic PDEs. This method discretizes time

using a forward difference and space using a central difference. Here's a detailed explanation of

the FTCS method:

Problem Context
Consider the one-dimensional heat equation:

∂u
∂ t

=α ∂2u
∂ x2

where  u=u(x ,t ) is  the temperature distribution,  α is  the thermal  diffusivity,  x is  the spatial

coordinate, and t is time.

Forward-Time Discretization
Using the forward difference for the time derivative, we have:

Central-Space Discretization
Using the central difference for the second spatial derivative, we have:

FTCS Scheme
Combining these discretizations, the heat equation becomes:

Solving for ui
n+1, we get the FTCS update formula:
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Stability Considerations
The  stability  of  the  FTCS  scheme  is  determined  by  the  Courant-Friedrichs-Lewy  (CFL)

condition. For the heat equation, the stability condition is:
α .∆ t
(∆x )2

≤ 1
2

This condition must be satisfied to ensure that the numerical solution remains stable.

The  Forward-Time  Central-Space  (FTCS)  method  is  a  straightforward  and  widely  used

numerical  method  for  solving  parabolic  partial  differential  equations  like  the  heat  equation.

While simple to implement, care must be taken to ensure stability through appropriate choices of

the time step and spatial step sizes.

Here's an overview of some common finite difference schemes for both types of problems:

Initial Value Problems (IVPs):
Forward Difference Method: The Forward Difference Method approximates the derivative of a

function f(x) using the values of f at discrete points. For a function sampled at points x i with a

uniform spacing h, the forward difference approximation of the first derivative at xi  is given by:

Here, h is the step size or the difference between consecutive points xi and xi+1.

Formulae:

1. First Derivative:

2. Second Derivative: The second derivative can be approximated using the forward difference 

twice:

Example 1:
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Let's solve the simple ODE dydx
= y with the initial condition y (0)=1 using the Forward 

difference method.

Solution: 
Forward Difference Method:

The Forward Difference Method for ODEs is a numerical method where the derivative dydx   is 

approximated using a forward difference:

dy
dx

≈
y i+1− y i

∆ x

Given the ODE dydx
= y, we can write

y i+1= y i+∆ x . y i

This simplifies to: 

 

y i+1= y i(1+∆ x)

Explanation:
1. Parameters and Initialization:

   x0 and y0 are the initial conditions x = 0 and y = 1.
   xf is the final x value up to which we want to solve the ODE.
   dx is the step size for x.
   n_steps is the number of steps required to reach xf from x0 with step size dx.

2. Arrays:
 x is an array of x values from  x0 to xf with n_steps points.
 y is an array to store the numerical solution of y at each x.

3. Forward Difference Method:
 Iterate over the number of steps.
 Apply the forward difference method to compute y at each step.

4. Analytical Solution:

For comparison, compute the analytical solutiony=ex.

5. Plotting:
Plot the numerical solution and the analytical solution for comparison.

Conclusion
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This example shows how to use the Forward Difference Method to solve the simple ODE  dydx
= y

. The numerical solution closely follows the analytical solution y=ex, demonstrating the 

accuracy of the method for small step sizes.

Discretize the Domain: Choose a step size h and points

 x0, x1, …, xn where xi+1  =  xi + h

Apply the Forward Difference Method:

Starting with y0 =1 and x0=0, iterate to find the values of y at subsequent points:

Backward Difference Method: 
The Backward Difference Method is another numerical approach to solve differential equations.

When  combined  with  the  Forward-Time  Central-Space  (FTCS)  scheme  for  spatial

Discretization, it can be used for solving parabolic partial differential equations (PDEs).

To illustrate, let's consider solving the heat equation using a combination of the FTCS method

for spatial discretizations and the Backward Difference Method for time discretizations.

Heat Equation
The heat equation in one dimension is given by:

∂u
∂ t

=α ∂2u
∂ x2

where u=u(x ,t ) is the temperature distribution, and α is the thermal diffusivity.

1. Time Discretization (Backward-Time):

 We discretize the time domain using the backward difference method.
 Let Δt be the time step size, and define time levels t n=nΔt  for n=0,1,2 ,…,M .
 The time derivative is approximated as:

14



Combined FTCS with Backward-Time Scheme

Combining these discretizations, the heat equation becomes:

Rearranging for ui
n, we get:

This can be rewritten as a system of linear equations:

Explanation
1. Parameters and Initialization:

   alpha, ‘L’, ‘T’, ‘nx’, and ‘nt’ define the physical parameters and the resolution of the
problem.
  ‘ dx’ and ‘dt’ are the spatial and time step sizes.
  The initial condition is set as a heat pulse in the center.

2. Matrix Assembly:

 Matrix  ‘A’  represents  the  coefficients  of  the  linear  system  derived  from  the

discretizations scheme.

 Boundary  conditions  are  implemented  by  setting  the  first  and  last  diagonal

elements of A to 1.

3. Time-Stepping Loop:

 For each time step, solve the linear system Au = b where b is the solution from the

previous time step.

4. Plotting:

 Plot the final temperature distribution after the last time step.

Conclusion
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The  Forward-Time  Central-Space  Backward  Difference  Method  combines  the  accuracy  of

central differences for spatial discretizations with the stability of backward differences for time

discretizations.  This  method  is  particularly  useful  for  solving  parabolic  PDEs  like  the  heat

equation, providing stable and accurate solutions.

Central Difference Method: This method uses the average of forward and backward difference

approximations  to  approximate  the  derivative,  providing  a  more  accurate  approximation

compared to forward or backward differences alone.

Runge-Kutta Methods:

Introduction:  These are higher-order finite difference methods that use weighted averages of

function values at multiple points in time to improve accuracy. The most commonly used are the

RK2 and RK4 methods.

A series of iterative techniques for estimating the solutions of ordinary differential equations

(ODEs) is known as the Runge-Kutta methods. Because of their stability and simplicity of use,

they are more accurate than straightforward techniques like Euler's method and are frequently

employed.

.

Runge-Kutta Methods or R K Methods:
The general form of an ODE is:

dy
dx

=f (x , y )

With the initial condition y (x0 )= y0

Second-Order Runge-Kutta Method (RK2)
One of the simplest  RK methods is the second-order RK method (RK2),  also known as the

midpoint method. It is given by:

1. Calculate the intermediate slope:

k1=f (xn , yn)

2. Calculate the slope at the mid point:

k 2=f ( xn+
∆ x
2

, yn+
∆ x
2

k1)

3. Update the value of y: 

16



yn+ 1= yn+∆ x .k 2

Fourth-Order Runge-Kutta Method (RK4)
The fourth-order Runge-Kutta method (RK4) is the most commonly used and provides a good

balance between accuracy and computational effort. It is given by:

1. Calculate the initial slope: 

k1=f (xn , yn)

2. Calculate the slope at the midpoint using k1:

k 2=f ( xn+
∆ x
2

, yn+
∆ x
2

k1)

3. Calculate another slope at the midpoint using k2:

k3=f (xn+
∆ x
2

, yn+
∆ x
2

k2)

4. Calculate the slope at the next point using k3:

k 4= f (xn+∆ x , yn+∆ xk3)

5. Update the value of y: 

yn+ 1= yn+
∆ x
6

(k 1+2k 2+2 k3+k4)

Example 2: 

Solve  dydx
= y with the initial condition y (0)=1 using Runge-Kutta Fourth Order Method.

Solution: Let's solve the ODE  dydx
= y with the initial condition y (0)=1 using the RK4 method.

For the solution of ODE  dydx
= y by using the RK4 method is given by:

Calculates y at xn+1 from y at xn  using the following steps:

1. Compute the value of y at x=0.1 with a step size Δx=0.1.

2. Initial conditions: x0=0 and y0 =1
3. Calculate y at x=0.1

k1=f (x0 , y 0)= y0=1

k 2=f ( xn+
∆ x
2

, yn+
∆ x
2

k1)
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k 2=f ( x0+
0.1
2

, y0+
0.1
2
.1)

k 2=f (1+0.05 ,1+0.05 .1)

k 2=f (1.05 ,1.05 )=1.05

k3=f (x1+
Δx
2

, y0+
Δx
2

. k 2 )

k3=f (1.05,1.1025)=1.1025

k 4=f (x0+Δx , y0+Δx .k3)

k 4= f (1+0,1.1 ⋅1.1025)

k 4=f (1,1.1 .10525)=1.1125

yn+1= yn+
∆ x
6

(k 1+2k 2+2 k3+k4)

y0+1= y0+
∆ x
6

(k1+2k 2+2 k3+k4)

y1= y0+
0.1
6

(k1+2k2+2k3+k 4)

y1=1+0.16 (1+2⋅1.05+2⋅1.0525+1.1125)

y1=1+
0.1
6

(6.4175)

y1=1+0.1069583333

y1=1.1069583333

We can repeat these steps to find y for other values of x.

Boundary Value Problems (BVPs):

Finite Difference Method (FDM): FDM is commonly used to discretize the spatial domain of a

BVP  and  then  solve  the  resulting  system  of  algebraic  equations.  Various  finite  difference

approximations can be used for spatial derivatives, such as central differences.

Shooting Method: In this method, the BVP is converted into an initial value problem by guessing

initial values for the unknown boundary conditions and then solving the resulting IVP using a

suitable finite difference scheme.

18



Finite Element Method (FEM): While not strictly a finite difference method, FEM discretizes

the domain into elements and approximates the solution within each element using piecewise

polynomial  basis  functions.  Finite  difference  approximations  may  still  be  used  to  solve  the

resulting system of algebraic equations.

Relaxation Methods: These iterative methods, such as the Jacobi or Gauss-Seidel methods, can

be used to  solve  BVPs by iteratively updating the  solution until  convergence to  the correct

boundary conditions is achieved.

The Forward-Time Central-Space (FTCS) scheme is a numerical method used for solving

partial differential equations (PDEs), particularly in the context of computational fluid dynamics

(CFD) and heat transfer problems.

In  essence,  FTCS  is  a  finite-difference  method  where  both  time  and  space  derivatives  are

approximated using forward differences for time and central differences for space.

Here's how it typically works:

Discretization: The domain of the problem is discretized in both space and time. This means

that the continuous spatial and temporal dimensions are divided into discrete intervals or grid

points.

Forward Difference in  Time:  The time derivative  term in the  PDE is  approximated using a

forward  difference  scheme,  meaning that  the  value  of  the  function  at  the  next  time step  is

approximated based on its current value and the rate of change.

Central Difference in Space: The spatial derivative term in the PDE is approximated using a

central difference scheme, which considers the values of the function at neighbouring points on

the grid.

Combination: These discretization’s are then combined to form a numerical scheme that allows

the evolution of the solution over time to be computed iteratively.

The FTCS scheme is simple and straightforward to implement, but it's important to note that it

may not always be stable or accurate for all types of problems. In particular, it can be subject to

stability constraints that limit the size of the time step that can be used, and it may suffer from

numerical diffusion, where sharp gradients in the solution are smoothed out over time.

2.2 Backward Euler Scheme
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The Backward Euler scheme is a numerical method commonly used to solve ordinary differential

equations (ODEs) or partial differential equations (PDEs) in time-dependent problems. It belongs

to the family of implicit finite difference methods and is particularly useful for stiff problems,

where the explicit schemes might be unstable or inefficient due to the small time steps required.

In the Backward Euler scheme:

Discretization in Time: The time domain is discretized into time steps of equal size, denoted by

Δt.

Implicit Formulation: Unlike explicit schemes where the future value of the solution depends

only on the current time step, in the Backward Euler scheme, the future value depends on both

the current and future time steps.

Approximation  of  Derivatives:  The  derivative  terms  in  the  differential  equation  are

approximated using backward differences, where the value at the next time step is approximated

in terms of the future value of the solution.

Algebraic  Equation:  This  results  in  an  algebraic  equation  involving  the  solution  values  at

multiple time steps. The equation is usually nonlinear and must be solved iteratively, typically

using methods like Newton's method.

Mathematically, for an ODE of the form dydt
=f (t , y), the Backward Euler scheme can be written

as:

yn+ 1= yn+Δt ⋅(t n+1 , yn+1) yn+1= yn+Δt ⋅ f (t n+1 , yn+1)

Here,  𝑦𝑛yn and𝑦𝑛+1yn+1 are the values of the solution at  time steps  𝑡𝑛tn and  𝑡𝑛+1tn+1,

respectively.

Similarly, for a simple linear ODE dydt
=ay, the Backward Euler scheme becomes:

yn+ 1= yn−a Δt yn+ 1=1−aΔt yn

The Backward Euler scheme is unconditionally stable, meaning it can handle large time steps

without stability issues. However, it introduces implicitness, requiring the solution of nonlinear

equations  at  each  time  step,  which  can  increase  computational  cost  compared  to  explicit

schemes. Nonetheless, it's a valuable tool for stiff problems where stability and accuracy are

crucial.
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2.3 Cranks-Nicolson Scheme

A numerical technique for solving time-dependent partial differential equations (PDEs) is the

Crank-Nicolson  scheme.  This  finite  difference  approach  provides  second-order  temporal

precision by combining aspects of the forward Euler and backward Euler schemes. The approach

is generally applicable to diffusion and convection-diffusion problems, especially when stability 

and precision are crucial.

Here's how the Crank-Nicolson scheme works:
Discretization  in  Time  and  Space:  Like  other  finite  difference  methods,  the  domain  of  the

problem is discretized both in time and space. Time is divided into equally spaced intervals (Δt),

while space is divided into equally spaced grid points.

Central Difference for Time: Unlike the forward Euler or backward Euler schemes, the Crank-

Nicolson scheme uses a central difference approximation for the time derivative. This results in a

second-order accurate approximation in time.

Central Difference for Space: Similarly, central difference approximations are used for spatial

derivatives.

Implicitness:  The  Crank-Nicolson  scheme  is  semi-implicit,  meaning  it  evaluates  the  time

derivative  terms  at  both  the  current  and next  time  steps.  This  results  in  a  system of  linear

equations, which is typically easier to solve compared to the nonlinear equations encountered in

fully implicit methods.

Mathematically,  for  a  simple  linear  diffusion  equation  ∂𝑢∂𝑡=𝐷∂2𝑢∂𝑥2∂t∂u=D∂x2∂2u,  the

Crank-Nicolson scheme can be written as:𝑢𝑖𝑛+1−𝑢𝑖𝑛Δ𝑡=𝐷2(𝑢𝑖−1𝑛+1−2𝑢𝑖𝑛+1+𝑢𝑖+1𝑛+1Δ𝑥2+𝑢𝑖−1𝑛−2𝑢𝑖𝑛+𝑢𝑖+1𝑛Δ𝑥2)Δtuin+1

−uin=2D(Δx2ui−1n+1−2uin+1+ui+1n+1+Δx2ui−1n−2uin+ui+1n)

This equation represents a tridiagonal system of linear equations, which can be efficiently solved

using techniques such as the Thomas algorithm.

The Crank-Nicolson scheme offers several advantages, including second-order accuracy in time,

unconditional stability for linear problems, and reduced numerical diffusion compared to explicit

methods. However, it may require more computational resources due to the solution of a linear
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system at each time step. Overall, it's a versatile and widely used scheme for time-dependent

PDEs in various fields, including heat transfer, fluid dynamics, and quantum mechanics.

2.4 Alternating Direction Implicit (ADI) Methods
The Alternating Direction Implicit (ADI) method is a numerical technique used to solve partial

differential equations (PDEs), particularly those describing parabolic or elliptic problems. It's an

iterative approach that decomposes the problem into smaller, one-dimensional problems, which

are easier to solve, and alternates between solving them in different directions.

Here's how the ADI method typically works:

Problem Decomposition: The PDE problem is decomposed into a sequence of one-dimensional

problems along different coordinate directions. For example, in a two-dimensional problem, the

PDE is solved along the x-direction and then the y-direction in alternating steps.

Implicit Time Integration: Within each direction, implicit time integration is applied, typically

using a backward Euler scheme or Crank-Nicolson scheme. This ensures stability, particularly

for stiff problems.

Alternating Directions: After each time step, the solution is updated alternately in the x-direction

and y-direction. This alternating approach helps to decouple the equations and simplifies the

solution process.

Tridiagonal  Matrix  Solution: At  each time step  in  each direction,  the  resulting  system of

equations is typically tridiagonal, making it relatively straightforward to solve using efficient

numerical techniques such as the Thomas algorithm.

Iteration:  The  process  of  updating  the  solution  in  alternating  directions  is  repeated  until

convergence is achieved. Convergence criteria can be based on reaching a certain tolerance or a

maximum number of iterations.

The ADI method offers several advantages:

Stability:  The implicit time integration along with the alternating direction approach ensures

stability, even for stiff problems.

Efficiency:  By  decomposing  the  problem  into  smaller  one-dimensional  problems,  the

computational cost is often reduced compared to solving the full problem in one go.

Accuracy: ADI methods can provide high accuracy, particularly when combined with higher-

order time integration schemes or spatial discretizations methods.
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However, there are also some limitations:

Dimensionality: ADI  methods  are  most  commonly  used  for  problems  in  two  or  three

dimensions. Extension to higher dimensions can become computationally expensive.

Boundary Conditions: Handling boundary conditions can be more complex, especially when

they vary in different directions.

Overall, the ADI method is a powerful tool for solving certain types of PDEs, particularly those

with  parabolic  or  elliptic  behaviour,  and  it's  widely  used  in  various  fields,  including

computational fluid dynamics, heat transfer, and quantum mechanics.

2.5 Summary
The discretizations of differential equations using finite difference approximations into algebraic

equations are a problem. Here's a succinct rundown:

 Discretization: A grid in both space and time is used to discretize differential equations.

The forward,  backward,  and centre  differences  finite  difference  formulae are  used to

approximate  spatial  derivatives.  Discrete  techniques  such as  Crank-Nicolson,  forward

Euler, and reverse Euler are used to discretize time derivatives. 

 Distribution:  The equations  that  finite  difference  schemes solve  can  be  either  partial

differential equations (PDEs) or ordinary differential equations (ODEs). PDE systems are

classified  as  parabolic,  hyperbolic,  or  elliptic  according  to  their  properties.  

2.6 Keywords
1. Finite Difference Method (FDM) 

2. Discretization 

3. Grid 

4. Stability 

5. Consistency 

6. Boundary Conditions 

7. Initial Conditions 

8. Parabolic Equations 

9. Hyperbolic Equations 

10. Elliptic Equations
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2.7 Self Assessment Questions
1. What is the fundamental principle behind finite difference schemes?

2. Explain the process of discretization in finite difference methods?

3. How spatial derivatives are approximated in finite difference schemes?

4. What  are  the  main  types  of  finite  difference  methods  used  for  solving  differential

equations?

5. Define  stability,  consistency,  and  convergence  in  the  context  of  finite  difference

schemes?

6. Describe the importance of boundary conditions in finite difference simulations?

2.8 Case Study
Finite Difference Simulation of Heat Conduction in a Metal Rod 
Introduction:  In this  case study,  we'll  explore how finite  difference schemes can be used to

simulate heat conduction in a metal rod. Heat conduction is a fundamental process encountered

in various  engineering applications,  such as  thermal  management  in  electronic  devices,  heat

exchangers, and material processing. 

Problem Statement: Consider a metal rod of length L with known thermal conductivity k, cross-

sectional area A, and initial temperature distribution T0(x). The rod is insulated along its length,

except for its ends. At each end, the temperature is fixed at T left and T right. 

Question: Simulate the temperature distribution along the length of the rod over time using finite

difference  methods.  We'll  discretize  both  space  and  time and solve  the  resulting  system of

algebraic equations to obtain the temperature profile at each spatial grid point and time step.

2.9 References
1. "Numerical Recipes: The Art of Scientific Computing" by William H. Press, Saul A.

Teukolsky, William T. Vetterling, and Brian P. Flannery

2. "Finite  Difference Methods for  Ordinary and Partial  Differential  Equations:  Steady-

State and Time-Dependent Problems" by Randall J. LeVeque
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UNIT- 3
Applications in Fluid Mechanics

Learning objectives
Generally speaking, the learning objectives of Applications in Fluid Mechanics course are to

provide students with the information and abilities needed to comprehend and evaluate fluid

behaviour in a variety of technical and practical applications. For such a course, the following

learning goals are typical: 

Comprehending Flexible, Conduct Statics of Fluids, Dynamics of Fluids, Methods for Measuring

Flow, Flow in the Pipe 

Structure
3.1Navier-Stokes Equations

3.2 Computational Fluid Dynamics

3.3 Practical Examples in Industry

3.4 Summary

3.5 Keywords

3.6 Self Assessment Questions

3.7 Case Study

3.8 References
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3.1 Navier-Stokes Equations
The  Alternating  Direction  Implicit  (ADI)  method  finds  numerous  applications  in  fluid

mechanics,  where it's  particularly useful  for solving the Navier-Stokes equations and related

transport phenomena. Here are some specific applications within fluid mechanics:

Incompressible Flow: ADI methods are commonly used to simulate incompressible fluid flow,

where the continuity and momentum equations are solved. This includes applications such as

flow around obstacles, within pipes, and over surfaces.

Steady-State Flow: ADI methods can be employed to find steady-state solutions of the Navier-

Stokes equations. This is useful for understanding the long-term behaviour of fluid systems, such

as determining flow patterns in pipes or channels.

Transient  Flow:  The  development  of  fluid  behavior  may  be  properly  captured  by  ADI

approaches  for  transient  issues,  where  the  flow  conditions  change  over  time.  Applications

include wave propagation, unstable flow in pipes, and fluid-structure interaction research fall

under this category.

Heat Transfer: In addition to fluid flow, ADI methods can be extended to solve coupled fluid

flow and heat transfer problems. This includes scenarios such as convective heat transfer in fluid

flows, thermal mixing in channels, and heat exchanger analysis.

Turbulent Flow:  While direct application of ADI methods to solve turbulent flows may be

limited due to the complexity of turbulence models, they can still be used in combination with

turbulence  models  (such  as  Reynolds-averaged  Navier-Stokes  or  large  eddy  simulation)  to

simulate various turbulent flow phenomena.

Multiphase Flows: ADI methods can be extended to handle multiphase flows, where two or

more immiscible fluids are present. Applications include oil-water flows, bubble dynamics, and

free surface flows.

Boundary Layer Analysis: ADI methods can be used to analyze boundary layer flows, which

are  important  in  understanding  aerodynamic  and  hydrodynamic  performance.  This  includes

applications such as flow over airfoils, ship hulls, and automotive bodies.

In each of  these  applications,  the ADI method provides  a  robust  and efficient  approach for

solving the governing equations of fluid mechanics. Its ability to handle complex geometries,

transient  behaviour,  and  coupled  phenomena  makes  it  a  valuable  tool  for  researchers  and

engineers in the field of fluid mechanics.
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Here are the Navier-Stokes equations in their most common form:

Continuity Equation (Conservation of Mass): 
∂ ρ
∂t

+∇ . (ρv )=0

This equation expresses the conservation of mass, where 𝜌 is the fluid density, 𝑣 is the velocity

vector field, and ∇ denotes the divergence operator.

Momentum Equation (Conservation of Momentum): 

∂(ρv)
∂ t

+∇ . (ρv X v )=−∇ p+∇ . τ+ρg ∂t
∂ (ρv)

This equation describes the conservation of momentum, where 𝑝 is the pressure, 𝜏 is the stress

tensor, and  g is the gravitational acceleration vector. The stress tensor depends on the fluid's

viscosity and velocity gradients.

Energy Equation (Conservation of Energy): 

∂( ρE)/∂ t+∇⋅(ρEv)=−∇ ⋅(q−pv)+∇⋅(τ ⋅v )+ρv ⋅ g∂ t /∂(ρE) +∇ ⋅(ρEv)=−∇ ⋅(q−pv )+∇⋅(τ ⋅ v)+ρv ⋅ g
Here, E is the total energy per unit volume, including kinetic and internal energy, q is the heat

flux vector, and 𝑝𝑣 represents the work done by the pressure forces. The term 𝜏⋅𝑣 represents

viscous dissipation.

These equations govern the behaviour of fluid flow in a wide range of situations, from simple

pipe  flows  to  complex  turbulent  flows.  Solving  the  Navier-Stokes  equations  numerically  is

essential for understanding and predicting fluid behaviour in practical engineering applications,

such as aerospace, automotive, and environmental engineering. However, due to the nonlinearity

and complexity of these equations, analytical solutions are often limited to simplified cases, and

numerical  methods,  such  as  finite  difference,  finite  volume,  or  finite  element  methods,  are

commonly used for practical simulations.

3.2 Computational Fluid Dynamics
Computational  Fluid  Dynamics  (CFD)  is  a  branch  of  fluid  mechanics  that  deals  with  the

numerical simulation of fluid flow and heat transfer phenomena. It involves the use of computer

algorithms and numerical methods to solve the governing equations of fluid dynamics, typically

partial differential equations (PDEs), which describe the behavior of fluids in motion.

Here are some key aspects of computational fluid dynamics:
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1. Governing Equations: The fundamental equations governing fluid flow and heat transfer

are the Navier-Stokes equations, which are a set of coupled nonlinear PDEs that describe

the conservation of momentum and mass for a fluid. Depending on the problem at hand,

additional  equations  such  as  those  for  energy  conservation  (heat  transfer)  or  species

transport (e.g., in combustion) may also be included.

2. Discretization:  The  continuous  governing  equations  are  discretized  using  numerical

methods to solve them on a discrete grid. Common discretization methods include finite

difference, finite volume, and finite element methods. These methods approximate the

derivatives in the governing equations using discrete difference or integration schemes.

3. Solution Techniques: Once the governing equations are discretized, iterative or direct

solution techniques are employed to solve the resulting system of algebraic equations.

Iterative techniques such as the Gauss-Seidel method or conjugate gradient method are

often used for large-scale problems encountered in CFD simulations.

Applications: 

CFD finds applications in a wide range of industries and fields, including aerospace, automotive,

energy,  environmental  engineering,  and  biomedical  engineering.  It  is  used  to  analyze  and

optimize the performance of various engineering systems, such as aircraft wings, turbine blades,

heat exchangers, and combustion chambers.

3.3 Practical Examples in Industry
Certainly! Computational Fluid Dynamics (CFD) finds extensive application across a wide range

of industries, aiding in the design, analysis, and optimization of various systems and processes.

Here are some practical examples of CFD applications in industry:

Aerospace:
Aircraft  Design:  Airflow  surrounding  aircraft  parts,  such  as  wings,  fuselages,  and  engine

nacelles,  is  simulated  using  computational  fluid  dynamics  (CFD)  to  maximize  aerodynamic

performance, minimize drag, and improve fuel economy.

Jet Engine Design: CFD helps in designing and optimizing internal components of jet engines,

such as turbine blades, combustion chambers, and nozzles, to improve efficiency, thrust, and

reduce emissions.

Automotive:
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Vehicle Aerodynamics: CFD is employed to analyze airflow around vehicles, including cars,

trucks, and buses, to minimize drag, enhance vehicle stability, and improve fuel economy.

Engine Cooling and Exhaust Systems: CFD is used to optimize the design of cooling systems for

engines and exhaust systems to manage heat dissipation, reduce noise, and enhance performance.

Energy:

Wind Turbine Design: CFD simulations are utilized to study wind flow patterns around wind

turbine blades, optimize blade shapes, and improve power generation efficiency.

Nuclear Reactor Safety: CFD is applied to model coolant flow and heat transfer within nuclear

reactors, aiding in safety analysis, design optimization, and accident mitigation.

Chemical and Process Industries:

Mixing and Reaction Systems: CFD helps in designing and optimizing mixing vessels, reactors,

and chemical processes by predicting flow patterns, residence times, and reaction kinetics.

Pollution Control: CFD is used to model gas dispersion and pollutant dispersion in industrial

stacks,  exhaust  systems,  and ventilation  systems to  assess  environmental  impact  and design

effective pollution control measures.

Building and Construction:

HVAC  Systems:  CFD  is  employed  to  optimize  the  design  of  heating,  ventilation,  and  air

conditioning (HVAC) systems in buildings to ensure thermal comfort, indoor air quality, and

energy efficiency.

Smoke and Fire Modelling:  CFD simulations are used to model smoke movement and fire

spread in buildings, aiding in fire safety design and evacuation planning.

Marine and Offshore:

Ship Hydrodynamics: CFD is utilized to study water flow around ships and offshore structures

to optimize hull shapes, reduce resistance, and improve manoeuvrability and fuel efficiency.

Offshore Platform Design: CFD simulations help in designing offshore platforms, risers, and

mooring systems by analyzing wave loads, wind loads, and hydrodynamic forces.

3.4 Summary
Applications in Fluid Mechanics encompass a diverse range of real-world scenarios where the

principles of fluid behaviour are applied to solve engineering problems and optimize systems.

Here's a summary:
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1. Hydrodynamics: Understanding fluid behaviour in motion, including the study of forces,

energy transfer, and flow patterns. Applications include the design of ships, submarines,

and offshore structures.

2. Aerodynamics:  Analysis  of  airflow  around  objects,  crucial  in  aircraft  design,  wind

turbines, and automotive aerodynamics for fuel efficiency and performance optimization.

3. Hydraulic  Engineering:  Design and management  of  water  systems,  including dams,

channels, and irrigation networks, to control flooding, provide water supply, and generate

hydroelectric power.

4. Thermal  Systems:  Utilizing  fluid  mechanics  principles  in  the  design  of  heating,

ventilation, and air conditioning (HVAC) systems for efficient temperature regulation in

buildings and vehicles.

5. Turbo machinery: Study and design of turbines, compressors, and pumps used in power

generation, propulsion systems, and industrial processes to efficiently transfer energy to

or from fluid flow

3.5 Keywords
1. Hydrodynamics

2. Aerodynamics

3. Thermal Systems

4. Biomechanics

5. Fluid Dynamics

6. Pipe Flow

3.6 Self Assessment Questions
1. What are the key differences between laminar and turbulent flow? Provide examples of

each.

2. Explain how Bernoulli's equation is applied to analyze fluid flow in a pipe.

3. Describe the concept of boundary layers in aerodynamics and its significance in aircraft

design.

4. What factors determine the design of a dam for water storage? Discuss the importance

of spillways and outlet structures.
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5. How does the Manning's equation differ from the Darcy-Weisbach equation, and when

is each used in hydraulic engineering?

3.7 Case Study
Designing an Efficient Cooling System for Data Centers
A technology company is expanding its data center infrastructure to accommodate the increasing

demand  for  cloud  services.  However,  the  existing  cooling  system is  struggling  to  maintain

optimal  temperatures,  leading  to  potential  risks  of  equipment  overheating  and  decreased

efficiency.

Question: Design a new cooling system that effectively manages heat dissipation within the data

center while minimizing energy consumption and operational costs.

3.8 References
1. Cengel,  Y.  A.,  &Cimbala,  J.  M.  (2017).  Fluid  Mechanics:  Fundamentals  and

Applications (4th ed.). McGraw-Hill Education. 
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UNIT - 4
Operational Techniques for Linear Programming Problems

Learning objectives
The learning objectives of Operational Techniques for Linear Programming Problems typically

include:

 Understand Linear Programming (LP)

 Understand Graphical Solution Methods

 Applications of Simplex Method

 Understand Sensitivity Analysis

 Applications of Integer Linear Programming (ILP)

 Understand Network Optimization

Structure
4.1 Introduction to Linear Programming

4.2 Computational Procedure of the Simplex Method

4.3 Two-Phase Simplex Method

4.4 Big-M Method

4.5 Summary

4.6 Keywords

4.7Self Assessment Questions

4.8 Case Study

4.9 References
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4.1 Introduction to Linear Programming

A mathematical optimization method called linear programming (LP) is used to determine which
result is optimal for a model with linear dependencies. Different operational strategies are used
to effectively tackle linear programming issues. Here are some commonly used techniques:
LPP Formulation

LPP stands for Linear Programming Problem, which is a mathematical optimization technique

used to maximize or minimize a linear objective function subject to a set of linear constraints.

The general formulation of an LPP is as follows:

Maximize (or Minimize):

Where:

 x1,x2,…,xn are decision variables representing quantities to be determined.

 c1,c2,…,cn are coefficients of the objective function to be maximized or minimized.

 aij are coefficients of the constraints.

 b1,b2,…,bm are the right-hand side constants of the constraints.

 The inequalities are typically in the form of less than or equal to (≤) constraints.

The Aim of  linear programming is to find the  values for the choice variables x1, x2,... xn that
optimize (maximize or minimize) the objective function while meeting all the requirements.

Linear  programming problems can be  solved using various  algorithms,  such as  the  simplex

method, interior-point methods, and the graphical method (for two-variable problems). These

algorithms iteratively improve the solution until an optimal solution is found.

Example  1: Let us consider a corporation that manufactures Product A and Product B. The
company's labor hours and raw material supply are limited, which affects output. The objective is
to maximize profit while taking into account resource limits.

Objective function: Maximize Z=5A+4B
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Constraints:

1. Labor hours constraint: The total labor hours available is 200. 

2A+3B≤200

2. Raw materials constraint: The total raw materials available is 150. 

3. A+2B≤150

4. Non-negativity constraints: A≥0,B≥0.

Here, A and B represent the quantities of Product A and Product B produced, respectively. The

objective function represents the total profit obtained from selling A units of Product A and B

units of Product B, with coefficients 5 and 4 representing the profit per unit of each product,

respectively.

Graphical Analysis of Linear Programming:
Graphical  analysis  of  linear  programming involves  visually  representing  the  constraints  and

objective function on a graph to find the optimal solution for the linear programming problem

(LPP) when dealing with two decision variables. Here's how it's done:

Step 1: Plot Constraints
1. For each constraint in the LPP, rewrite it in the form y=mx+b by solving for y.

2. Plot each constraint line on the graph.

3. Shade the feasible region, which is the area where all constraints are satisfied. This region

is typically a convex polygon.

Step 2: Plot Objective Function
1. Plot the objective function on the graph using its coefficients.

2. Determine whether to maximize or minimize the objective function.

Step 3: Identify Optimal Solution
1. Identify  the  point  within  the  feasible  region that  either  maximizes  or  minimizes  the

objective function. This point is the optimal solution.

2. If the objective function is parallel to one of the constraint lines, the optimal solution may

lie on a corner (vertex) of the feasible region.

Example 2: Let's use the example of a company producing Product A and Product B with the

following constraints and objective function:

Objective function: Maximize Z=5A+4B
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Constraints:

1. Labor hours constraint: 2A+3B≤2002

2. Raw materials constraint: A+2B≤150

3. Non-negativity constraints: A≥0,B≥0

4.2 Computational Procedure of the Simplex Method
The simplex method is a widely used algorithm for solving linear programming problems. Here's

a step-by-step computational procedure of the simplex method:

Step 1: Convert the Problem to Standard Form
1. Rewrite the objective function and constraints so that:

 The objective function is a maximization problem.

 All constraints are equality constraints.

 All decision variables are non-negative.

Step 2: Initialize the Simplex Tableau
1. Create the initial simplex tableau by introducing slack variables for each constraint to

convert the inequalities into equalities.

2. Include the coefficients of the objective function and the slack variables in the tableau.

3. Identify the basic variables (those corresponding to the slack variables) and non-basic

variables (those corresponding to original decision variables).

Step 3: Perform Iterative Steps
1. Select  Pivot  Column:  Choose  the  column with  the  most  negative  coefficient  in  the

objective row. This column becomes the pivot column.

2. Select Pivot Row: Determine the pivot row by selecting the row with the smallest non-

negative ratio (result of dividing the RHS by the corresponding coefficient in the pivot

column).

3. Update the Tableau: Perform row operations (Gauss-Jordan elimination) to make the

pivot element equal to 1 and all other elements in the pivot column equal to 0.

4. Update Basic and Non-Basic Variables: Update the basic and non-basic variables based

on the pivot column and row.

5. Repeat Steps 3.1 to 3.4: Continue iterating until all coefficients in the objective row are

non-negative. This indicates that the current solution is optimal.
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Step 4: Interpret the Solution
1. Extract the solution from the final tableau:

 The values of the basic variables (slack variables) give the optimal solution.

 The  objective  function  value  at  the  optimal  solution  is  obtained from the

tableau.

2. If necessary, convert the solution back to the original form of the problem.

Step 5: Sensitivity Analysis
1. Perform sensitivity  analysis  to  understand how changes  in  the  problem's  coefficients

affect the optimal solution and objective function value.

Step 6: Termination
1. Terminate the algorithm once an optimal solution is found.

the variables S3, S4, S5 are called as slack variables.

Example 3: Solve by simplex method
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Solution: 
Simplex Table 1

CB
Basic

Variable

Cj 60 70 0 0 0

Xb x1 x2 s3 s4 s5

0 s3 300 2 1 1 0 0

0 s4 509 3 4 0 1 0

0 s5 812 4 7 0 0 1

Z -60 -70 0 0 0

Simplex Table 2

CB
Basic

Variable

Cj 60 70 0 0 0

Xb x1 x2 s3 s4 s5

0 s3 184 10/7 0 1 0 -1/7

0 s4 45 5/7 0 0 1 -4/7

70 X2 116 4/7 1 0 0 1/7

Zj - Cj -140/7 0 0 0 70/7

Hence X1 should become a basic variable at the next iteration.

Minimum ratio: 

Min ( 18410/7
, 45
5/7

, 116
4 /7 ) =  Min ( 6445 ,63 ,203)=63

Simplex Table 3

 Minimum ratios:
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Simplex Table 4

So,  zj–cj≥0 for all j, 

Thus, the objective function is maximized for x1 = 691/5 and x2=118/5 and

Hence maximum Z= 9944

4.3 Two-Phase Simplex Method
The Two-Phase Simplex Method is an extension of the Simplex Method used to solve linear

programming problems that may have initial infeasible solutions. It involves two phases:

Phase 1:
1. Introduce artificial variables to convert the constraints to equations.

2. Solve  the  auxiliary  problem  to  find  an  initial  basic  feasible  solution  (IBFS)  by

minimizing the sum of artificial variables.

3. If  the  solution  to  the  auxiliary  problem has  a  non-zero  objective  value,  the  original

problem is infeasible, and the process stops.

4. If the solution to the auxiliary problem has a zero objective value, remove the artificial

variables and continue to Phase 2.

Phase 2:
1. Use  the  simplex  method  to  solve  the  original  problem  with  the  artificial  variables

removed.

2. Iteratively improve the current basic feasible solution until an optimal solution is found.

3. If  the  optimal  solution  to  the  original  problem  has  a  non-zero  objective  value,  the

problem is unbounded.

Example 4:
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Solve the problem by Two phase method 

Solution:

First Convert minimization to maximization

Phase I: Maximize: – A6– A7

 
The initial basic feasible solution is A6=2000,A7=100000and S5= 200000.

Find A6 and A7 become zero.
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X1 = 10000/7 X2 = 4000/2 S5=250000/7

Phase II:
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all Zj-Cj≥0 

X1=10000/7=1428 X2=4000/7= 571.4

Minimum Z : 26135.3

4.4 Big-M Method

Introduce artificial variables A6 and A7.
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Hence,

X1=10000/7

X2=4000/7 

Minimum Z= 26135.3
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4.5 Summary
Operational  Techniques for  Linear  Programming Problems equips  learners  with the  skills  to

model, solve, and analyze optimization problems in various contexts, enabling efficient decision-

making and resource allocation. Operational Techniques for Linear Programming Problems is a

course designed to equip learners with the skills and knowledge necessary to tackle optimization

challenges within constraints.

4.6 Keywords

 Linear Programming

 Optimization

 Constraints

 Decision Variables

 Objective Function

 Feasible Region

 Graphical Solution

 Simplex Method

4.7 Self Assessment Questions
1. What is the fundamental objective of linear programming?

2. Describe the components of a linear programming model.

3. Explain  the  difference  between  feasible  solutions  and  optimal  solutions  in  linear

programming.

4. How does the graphical method assist in solving linear programming problems?

5. Outline  the  steps  involved  in  the  simplex  method  for  solving  linear  programming

problems.

6. How does integer linear programming differ from linear programming?

4.8 Case Study
Optimizing Production at Genentech Manufacturing
GreenTech Manufacturing is a company specializing in eco-friendly household products. One of

its best-selling items is a multi-purpose cleaner, produced using a blend of natural ingredients.

The production process involves mixing, bottling, labelling, and packaging. The company aims
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to maximize its profits while adhering to various constraints, including ingredient availability,

production capacity, and market demand.

Question:  GreenTech Manufacturing wants to optimize its production process for the multi-

purpose  cleaner  to  meet  customer  demand  while  minimizing  costs.  The  company  needs  to

determine the optimal production plan considering factors like ingredient availability, production

capacity, and market demand variations.
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UNIT - 5
Duality in Linear Programming

Learning objectives
Duality  in  linear  programming  is  a  fundamental  concept  with  several  important  learning

objectives:

 Understanding the Concept of Duality

 Recognizing Weak and Strong Duality

 Dual Feasibility and Primal Feasibility

 Interpreting the Dual Problem

 Applications in Economics and Operations Research

 Optimality Conditions

 Formulation and Solving of Dual Problems

Structure
5.1 Dual Problems

5.2 Duality Theorems

5.3 Interpretation and Application in Optimization

5.4 Summary

5.5 Keywords

5.6 Self Assessment Questions

5.7 Case Study

5.8 References
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5.1 Dual Problems
Duality in linear programming refers to the relationship between a given linear programming

problem (referred to as the primal problem) and its associated dual problem. The duality concept

provides valuable insights into the structure and properties of linear programming problems and

plays a crucial role in optimization theory. Here's an overview of duality in linear programming:

Primal Problem:
The fundamental linear programming issue that we are trying to solve is known as the primal

problem. Usually,  an objective function must  be maximized or  minimized while  taking into

account  a  number  of  linear  restrictions.  The  following is  a  formulation  of  the  fundamental

problem:

Maximize (or Minimize):Tx

Subject to:
Ax≤bx≥0

Dual Problem:

Derived from the primal problem, the dual problem offers an alternative viewpoint on the same

optimization problem. It entails maximizing or decreasing a separate objective function while

adhering to a pair of complementary restrictions. One way to formulate the dual problem is as

follows:

Minimize (or Maximize):𝑏𝑇𝑦
Subject to:𝐴𝑇𝑦≥𝑐𝑦≥0

Where:𝑦 is the vector of dual variables.𝐴𝑇 is the transpose of the constraint coefficient matrix 𝐴A.

Relationship between Primal and Dual:

Duality  theory  establishes  a  strong  relationship  between  the  primal  and  dual  problems.

Specifically:

Weak Duality: The following inequality holds for each viable solution 𝑥x of the primal issue and

any feasible solution 𝑦y of the dual problem: 𝑐𝑇𝑥≤𝑏𝑇y.Weak duality is the name given to this

quality.
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Strong Duality: If both the primal and dual problems have optimal solutions, their objective

function values are equal:  If 𝑐𝑇𝑥∗=𝑏𝑇𝑦∗, then both 𝑥∗ and 𝑦∗ are optimal solutions. This

property is known as strong duality.

Interpretation:
The primal problem seeks to optimize resource allocation (e.g.,  maximize profit or minimize

cost) subject to constraints.

The dual problem provides insights into the value of resources (e.g., prices or shadow prices) and

can be interpreted as maximizing the lower bound (minimizing the upper bound) on the objective

function.

Duality  in  linear  programming  is  a  fundamental  concept  with  wide-ranging  applications  in

optimization theory, economics, game theory, and operations research. It provides a powerful

tool for understanding the structure of optimization problems and deriving useful insights into

their properties.

Maximize (or Minimize):𝑐𝑇𝑥
Subject to:
Ax≤b𝑥≥0

Dual Problem:

The dual problem is derived from the primal problem using the concept of duality in linear

programming. It involves minimizing or maximizing a different objective function, subject to a

set of dual constraints. The dual problem can be formulated as follows:

Minimize (or Maximize):𝑏𝑇y
Subject to:𝐴𝑇𝑦≥𝑐𝑦≥0

Where:𝑦 is the vector of dual variables.𝐴𝑇is the transpose of the constraint coefficient matrix 𝐴.
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Relationship Between Primal and Dual:

The primal and dual problems are closely related through duality theory, which establishes the

following relationships:

Weak Duality: The following inequality holds for each possible solution 𝑥 of the primal issue

and any feasible solution 𝑦 of the dual problem: 𝑐𝑇𝑥≤𝑏𝑇𝑦 Weak duality is the name given to

this quality.

Strong Duality: If both the primal and dual problems have optimal solutions, their objective

function values are equal: If 𝑐𝑇𝑥∗=𝑏𝑇𝑦∗, then both 𝑥∗ and 𝑦∗ are optimal solutions.

Interpretation:

The primal problem represents the optimization of resource allocation, while the dual problem

provides insights into the value of resources (e.g., prices).

5.2 Duality Theorems
Certainly! Let's discuss the Weak Duality Theorem and the Strong Duality Theorem in linear

programming along with their proofs.

1. Weak Duality Theorem:
The  objective  function  value  of  the  primal  problem is  always  smaller  than  or  equal  to  the

objective function value of the dual problem for any practical solutions of the primal and dual

issues.

Proof:
Consider the primal problem (P) in standard form: 

Maximize ZP

Subject to Ax≤b ,

Xi≥0

and its associated dual problem (D): 

Minimize ZD 

Subject to AT y ≥ c ,

y ≥0

Let the primal problem have a viable solution, x, and the dual problem have a feasible solution,𝑦. Next, we have
:
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A x≤b

AT y ≥ c

Taking the inner product of these inequalities, we get:
cTx ≤ yTAx≤ yTb

Since y≥0, we have y T b=bT y, and thus:

cTx ≤bTy

This proves the Weak Duality Theorem.

2. Strong Duality Theorem:
Statement: The optimal objective function values of the dual and primal linear programming

problems must equal if they have workable solutions.

Proof:

Let x∗ represent the optimum solution for the primal problem, where the ideal objective function

value  is  z∗=cTx∗,  and  y∗ represent  the  optimal  solution  for  the  dual  problem,  where  the

optimal objective function value is w∗=bTy∗.

From the Weak Duality Theorem, we know that cTx∗≤bTy∗. Additionally, since x∗ and y∗ are

feasible solutions to the primal and dual problems, respectively, we have:

cTx∗≥cTx∗;  bTy∗≥bTy∗
Combining these inequalities, we get:

cTx∗=bTy∗
This proves the Strong Duality Theorem.

These duality theorems are fundamental in linear programming, providing essential theoretical

results that are used extensively in optimization theory and applications.

5.3Interpretation and Application in Optimization
The duality theorems in linear programming have significant interpretation and application in

optimization theory.

Weak Duality Interpretation:

The optimal value of the dual problem, which is the primal problem's optimal value, is lower
limited by the weak duality theorem.
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It implies that the solution to the primal problem cannot exceed the solution to the dual problem,

providing valuable insights into the relationship between the primal and dual problems.

Strong Duality Interpretation:

The  strong  duality  theorem  establishes  a  strong  relationship  between  the  primal  and  dual

problems, indicating that they both have optimal solutions if one of them is feasible.

It  guarantees that the optimal objective function values of the primal and dual problems are

equal, providing a powerful theoretical result that simplifies optimization analysis.

Application in Optimization:
Sensitivity Analysis:

Duality theorems are used in sensitivity analysis to assess the impact of changes in problem

parameters (e.g., coefficients, constraints) on the optimal solution.

By  analyzing  the  dual  variables,  which  represent  the  shadow  prices  or  resource  values,

sensitivity analysis provides insights into the robustness of the optimal solution.

Algorithm Design:

Duality theorems play a crucial role in the design of optimization algorithms, such as the simplex

method and interior point methods.

They provide theoretical foundations for algorithm development and guide the formulation of

efficient computational procedures.

Optimization Modelling:

Duality theorems influence the formulation of optimization models by providing insights into the

structure and properties of optimization problems.

They aid in the selection of appropriate objective functions, constraints, and decision variables to

achieve desirable optimization outcomes.

Resource Allocation:

In economic applications, duality theorems help in resource allocation decisions by providing

information about the value of resources (e.g., prices) derived from the dual problem.

They guide decision-making processes by quantifying trade-offs between different resources and

objectives.
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Game Theory:

Duality theorems are applied in game theory to analyze strategic interactions and equilibrium

solutions in competitive environments.

They provide a framework for understanding optimal strategies and payoffs in various types of

games.

In  summary,  duality  theorems  have  broad  applications  in  optimization  theory  and  practice,

influencing algorithm design,  sensitivity analysis, optimization modelling, resource allocation

decisions, and game theory. They provide essential insights into the structure and properties of

optimization  problems,  enabling  informed  decision-making  and  efficient  problem-solving

techniques.

5.4 Summary
There is an underlying link between primal and dual optimization issues that is revealed by the

deep idea of duality in linear programming. Fundamentally, duality states that there is a problem

known  as  its  twin  for  any  linear  programming  issue.  

Whereas  the  dual  problem  entails  maximizing  or  minimizing  a  separate  objective  function

subject to its own set of constraints, the primal problem focuses on maximizing or minimizing an

objective function subject to specific  restrictions.  It's  amazing how closely related these two

issues are, with answers to one offering understanding of the other. 

5.5 Keywords

 Primal problem

 Dual problem

 Primal feasibility

 Optimality conditions

 interpretation

 Transformation

 Optimization theory

 Linear programming

 Operations research

 Objective function
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 Constraints

 Lagrange multipliers

 Optimality.

5.6 Self Assessment Questions
1. Define duality in the context of linear programming and explain its significance.

2. What is the difference between weak duality and strong duality? Provide examples to

illustrate each.

3. Explain  the  concept  of  dual  feasibility  and  its  importance  in  the  context  of  linear

programming.

4. Describe the conditions under which strong duality holds in linear programming.

5. How do complementary slackness conditions contribute to verifying optimality in linear

programming problems?

5.7 Case Study
Supply Chain Optimization
Imagine a retail company that operates a network of warehouses and distribution centers across

the country.  The company's  goal  is  to  efficiently  distribute its  products from manufacturing

facilities to retail stores while minimizing transportation costs.

Primal Problem: In this case, the primary issue is figuring out the best routes for transportation

and  how much  inventory  to  send  from  warehouses  to  retail  locations.  The  aim  is  to  save

transportation expenses while guaranteeing that the demand of every store is satisfied and that

the warehouse's capacity limitations are not surpassed. With limitations on capabilities, requests,

and transportation costs, this issue may be expressed as a linear programming problem.
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UNIT - 6
Assignment Models

Learning objectives
Learning Objectives of Assignment Models:

 Conceptual Understanding

 Model Formulation

 Optimization Techniques

 Application Skills

 Solution Methods

 Interpretation and Analysis

Structure
6.1 Mathematical Formulation

6.2 Hungarian Method

6.3 Variations and Extensions

6.4 Summary

6.5 Keywords

6.6 Self Assessment Questions

6.7 Case Study

6.8 References
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6.1 Mathematical Formulation
The structure of the Assignment problem is similar to a transportation problem, is as follows:

                            Figure 6.1.1 Structure of the Assignment problem

The effectiveness measure when ith worker is assigned jth job is represented by the element Cij.

Presume  that  the  goal  is  to  reduce  the  total  effectiveness  measure.  

The number of ith people allocated to the jth task is represented by the element Xij. A person can

be  allocated  using  the  following:  Xi1+Xi2+...  +  Xin=  1,  wherei=  1,2,  n  

A  person  may  only  be  allocated  to  one  job,  and  only  one  job  at  a  time.  

maximizing or decreasing an alternative goal function while adhering to specific limitations. It's

amazing how closely related these two issues are, with answers to one offering understanding of

the other.

we have  X 1 j+X 2 j+…………….+X nj=1, where j = 1, 2, . .  . .  . .  . ,  n and the objective

function is formulated as Minimize
C11X 11+C 12X 12+……… ..+Cnn Xnn∧X ij≥0

The assignment problem is actually a special case of the transportation problem where m =n and
ai=bj=1.

6.2 Hungarian Method
The assignment challenge is to determine the most effective way to allocate a collection of tasks

to  a  group  of  agents  or  computers.  The  Hungarian  Method  is  a  combinatorial  optimization

method that achieves this goal.  Known alternatively as the Kuhn-Munkres algorithm, it  was

created by Harold Kuhn in 1955 and further improved by James Munkres in 1957. Especially
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when there aren't many tasks and agents, the Hungarian Method offers a productive solution to

the assignment problem.

Here's an outline of the Hungarian Method:

1. Setup: Given a cost matrix C of size n×n, where n is the number of tasks or agents, and

each element cij represents the cost of assigning the j-th task to the i-th agent.

2. Initialization: Convert the cost matrix C into a matrix of potentials P using a method

such as the row reduction method. This involves subtracting the minimum value of each

row from all elements in that row and subtracting the minimum value of each column

from all elements in that column.

3. Step 1: Zero Assignment: Identify the smallest element in the matrix of potentials P.

Subtract this value from all other elements of the matrix such that the smallest element

becomes zero.

4. Step 2: Row and Column Reduction: Adjust the matrix P to ensure at least one zero is

present in each row and column. This may require subtracting the smallest element in

each row from all other elements of the row and subtracting the smallest element in each

column from all other elements of the column.

5. Step 3: Covering Zeros: Cover all zeros in the matrix using the minimum number of

lines (rows or columns) possible. If the number of lines equals n, proceed to Step 7;

otherwise, continue to Step 4.

6. Step 4: Finding Minimum Number of Lines: Determine the minimum number of lines

required to cover all zeros using the minimum number of lines algorithm. Adjust the

potentials PPP accordingly.

7. Step 5: Assigning Tasks: Assign tasks to agents based on the uncovered zeros. If a zero

is uncovered, it represents a potential assignment. Choose any zero and mark its row and

column as assigned. If there are no uncovered zeros, proceed to Step 6.

8. Step 6: Adjusting Potentials: Adjust the potentials P to create additional zeros while

preserving the existing assignments. Then return to Step 3.

9. Step  7:  Final  Assignment: The  final  assignment  is  obtained  by  selecting  the  zeros

corresponding  to  the  assigned  tasks.  These  zeros  form  a  set  of  non-attacking  pairs,

representing the optimal assignment.

 Example 1:
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Four people are available to work on the four occupations in a work shop. Each job may only

have one worker at a time. The cost of allocating each individual to each task is displayed in the

following table. The goal is to allocate workers to tasks in a way that minimizes the overall cost

of the assignment.

Solution:
Step 1: Determine the cost table based on the provided problem. Keep in mind that a fake origin 

or destination has to be inserted if the number of origins and destinations is not equal. 

Step 2: Determine which element in each table row has the lowest cost, then deduct that element 

from each element in that row. so that the new table's rows will all have a minimum of one zero. 

The First Reduced Cost table is the name of this new table. 

Step 3: Determine which element in each table column has the lowest cost, then deduct that

element from each element in that column. This means that there is at least one zero element in

every row and column. The Second Reduced Cost Table is the name of this new table.
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Step 4: Determine an Assignment
In Step 3, we look at row A of the table and see that there is only one zero (cell A1). We then

box this zero and cross off the other zeros in the column that is boxed. This allows us to get rid

of cell B1.Upon closer inspection, we can see that row C has one zero (cell C2). We may box

this  zero and cross out,  or remove, the zeros in the boxed column.  This is  the process that

eliminates cell D2. The third column has one zero. Consequently, cell D3 is boxed, which allows

us to remove cell D4.
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The total cost : 78

A1 +B4+ C2+ D3=20+ 17+ 17+24= 78

Unbalanced Assignment Problem:
We assumed in the last section that there would be an equal number of tasks and people to 

allocate. We refer to this type of assignment problem as a balanced assignment problem. 

Assume that an assignment problem is deemed imbalanced if the number of employees differs 

from the number of positions.

Some of them won't be able to find employment if there are fewer jobs than there is people. 

Therefore, in order to convert the imbalanced assignment problem into a balanced assignment 

problem, we must add one or more fake tasks of zero duration. 
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Example 2:
Determine the shortest time needed to complete all of the tasks in the following unbalanced 
assignment.

Solution:

Step1: The cost table

Step2: Find the First Reduced Cost Table
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Step 3: Find the second Cost Reduced table:

Step 4: 
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The total 14, 

that is A4+B1+D5+E2+F3=2+2 +4+3+3= 14

Example 3:
A computer centre has five jobs to be done and has five computer machines to perform them. 

               
The cost of processing of each job on any machine is shown in the table below.

Solution:
Step 1: 

Step3:Find the Second Reduced Cost Table
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Step 4: 

Step 5: 
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Step 6:  Now, go to  Step  4  and repeat  the  procedure  until  we arrive at  an optimal  solution

(assignment).

The minimum assignment cost is:170

6.3 Variations and Extensions
Variations  and extensions in  computational  methods encompass  a  wide  range of  specialized

techniques and approaches that build upon foundational concepts to address specific challenges

or cater to particular application domains. Here are some notable variations and extensions:

Sparse and Structured Learning:

Sparse learning techniques aim to identify and exploit the inherent sparsity in high-dimensional

data, leading to more efficient and interpretable models.

Structured learning methods incorporate domain-specific structural constraints into the learning

process,  such  as  graph  regularization  or  manifold  learning,  to  improve  generalization

performance.

Transfer Learning and Domain Adaptation:

Transfer learning enables knowledge transfer from a source domain to a target domain, where

labeled data may be limited or unavailable.

Domain adaptation techniques aim to bridge the gap between source and target  domains by

aligning their feature distributions or learning domain-invariant representations.

Bayesian Inference and Probabilistic Graphical Models:

Bayesian inference methods provide a principled framework for incorporating prior knowledge

and uncertainty into statistical modeling and decision-making.

Probabilistic graphical models, such as Bayesian networks and Markov random fields, capture

complex dependencies among variables and enable efficient inference and reasoning.

Reinforcement Learning and Decision Making:

Reinforcement learning algorithms learn optimal decision-making policies through trial and error

interactions with an environment, often in the context of sequential decision-making tasks.

Markov  decision  processes  (MDPs)  and  partially  observable  Markov  decision  processes

(POMDPs)  formalize  decision-making  problems  under  uncertainty  and  are  central  to

reinforcement learning.
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Temporal and Sequential Data Analysis:

Time  series  analysis  techniques,  such  as  autoregressive  models,  recurrent  neural  networks

(RNNs),  and  long  short-term  memory  (LSTM)  networks,  are  tailored  for  modeling  and

forecasting temporal data.

Sequential data analysis methods, including sequence alignment, sequence mining, and sequence

generation, extract patterns and insights from ordered sequences of data.

Geospatial and Spatial-Temporal Analysis:

Geospatial analysis techniques leverage spatial data structures and algorithms to analyze and

visualize geographical information, such as geographic information systems (GIS) and spatial

databases.

Spatial-temporal  analysis  methods  integrate  spatial  and  temporal  dimensions  to  model  and

analyze  dynamic  phenomena,  such  as  climate  patterns,  transportation  networks,  and

epidemiological trends.

Meta-Learning and Self-Supervised Learning:

Meta-learning algorithms enable models to learn how to learn across multiple tasks or domains,

facilitating rapid adaptation to new learning scenarios.

Self-supervised  learning  techniques  leverage  unsupervised  learning  signals,  such  as  data

augmentation or pretext tasks, to learn useful representations from unlabeled data.

Causal Inference and Counterfactual Reasoning:

Causal inference methods aim to identify causal relationships and estimate causal effects from

observational or experimental data, enabling causal reasoning and policy evaluation.

Counterfactual  reasoning  techniques  model  hypothetical  scenarios  to  estimate  the  potential

outcomes of different interventions or actions, aiding decision-making under uncertainty.

These variations and extensions in computational methods cater to diverse application domains

and research areas, offering specialized tools and techniques to address complex challenges and

unlock new opportunities for innovation and discovery. By exploring these advanced methods,

researchers can push the boundaries of computational science and contribute to the advancement

of knowledge and technology.

Exercise
Question 1: Solve the following transportation problem:
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W1 W2 W3 supply

F1 16 20 12 200

F2 14 8 18 160

F3 26 24 16 90

Demand 180 120 150

Question 2: Solve the following job sequencing problem :

Question 3:. Find the sequence of jobs that minimizes elapsed time to complete the jobs.

6.4 Summary
In  a  variety  of  fields,  including  project  management,  workforce  scheduling,  logistics,  and

transportation,  assignment  models  are  mathematical  strategies  that  are  used  to  improve  the

allocation of resources to tasks or activities. Assigning resources in the most effective way to

minimize expenses, enhance revenues, or accomplish other predetermined goals is the main goal

of assignment models, subject to limitations.

6.5 Keywords

 Assignment Problem

 Optimization
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 Decision Variables

 Objective Function

 Constraints

 Hungarian Algorithm

 Transportation

 Logistics

 Resource Allocation

6.6 Self Assessment Questions
1. What is the primary objective of assignment models?

2. Explain the difference between linear programming and integer programming in the

context of assignment models.

3. What are decision variables in an assignment model, and how are they used?

4. Describe  the  key  components  of  formulating  an  assignment  problem  as  a

mathematical model.

5. What are some common applications of assignment models in real-world scenarios?

6. Briefly explain the Hungarian algorithm and its significance in solving assignment

problems.

6.7 Case Study
 Optimizing shift scheduling for its nursing staff is a difficulty for a major healthcare center that

operates around the clock and consists of many departments.  The facility seeks to minimize

overtime expenses and retain employee satisfaction while always ensuring appropriate staffing

levels.The healthcare institution must distribute nursing personnel throughout shifts in several

departments  while  taking  into  account  a  number  of  variables,  including  skill  requirements,

employee preferences, labor laws, and patient care requirements. 

Question: Establish a fair and effective shift plan that satisfies staff  needs, reduces overtime

costs, and encourages for work. 
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UNIT - 7 
Travelling Salesman Problem

Learning objectives

 Gain a comprehensive understanding of the Travelling Salesman Problem (TSP) and its

significance in combinatorial optimization and operations research.

 Translate  real-world scenarios into mathematical  representations suitable  for  solving

TSP.

 Analyze  the  computational  complexity  of  TSP  and  its  variants,  including  time

complexity, space complexity, and the relationship between problem size and algorithm

performance.

Structure
7.1 Introduction

7.2  Methods to solve the travelling salesman problem 

7.3  Trying to solve the travelling salesman problem using greedy algorithms 

7.4 Summary

7.5 Keywords

7.6 Self Assessment Questions

7.7 Case Study

7.8 References
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7.1 Introduction
One of the most well-known optimization problems in computer science and operations research

is the Traveling Salesman Problem (TSP). Its main goal is to determine the quickest path that

enables a salesman to travel to a group of locations precisely once and then return to the starting

point.

G is a graph that contains a travelling salesman tour with cost that does not exceed}.

Example 1:

Consider the following set of cities:

Figure 7.1    Travelling Salesman Path

The issue lies in finding a negligible way passing from all vertices once. For instance Path1 {A,

B, C, D, E, A} and Path2 {A, B, C, E, D, A} pass all the vertices however Way 1 has an all out

length of 24 and Way 2 has an all out length of 31.

Hamiltonian Cycle:
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Example 2:

Figure 7.2 A graph with various Hamiltonian paths.

Let P ={A, B,C,D, E}is a Hamiltonian cycle.

7.2 Methods to solve the travelling salesman problem
In the event that for the arrangement of vertices a, b, c e V, The facts confirm that t (a, c) 5 t(o, b)

+ t(b, c) where t is the expense capability, we say that it fulfils the triangle disparity.

To start with, we make a base traversing tree the heaviness of which is a lower bound on the

expense of an ideal mobile sales rep visit. Utilizing this base traversing tree, we will make a visit

the expense of which is all things considered twice the heaviness of the spreading over tree. We

present the calculation that plays out these calculations utilizing the MST-Demure calculation.

7.3 Trying to solve the travelling salesman problem using greedy algorithms
Consider the case of the asymmetric travelling salesman. We utilize the notation (Kn,c), where n

is the number of vertices and c is the weight function. We assume that the definition of the

symmetric travelling salesman problem is the same, with Kn denoting a full undirected graph.

When  employing  heuristics  to  discover  an  approximate  solution  to  an  NP-hard  problem,

computational  experiments  are  required  to  compare  the  results.  A  metric  known  as  the

dominance  number  is  used  to  compare  how well  heuristics  work.  It  is  preferable  to  use  a

heuristic with a greater domination number rather than one with a lower one.
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Definition:  The domination number for the TSP of a heuristic A is an integer such as that for

each instance l of the TSP on n vertices A produces a tour T that is now worse than at least d(n)

tours in l including T.

When comparing the nearest neighbour and greedy algorithms for the TSP, we discover that

while they perform well  for the Euclidean TSP, they perform poorly for the symmetric and

asymmetric  TSPs.  Using  the  dominance  number,  we  examine  below  how  well  the  nearest

neighbour and greedy algorithms perform.

7.4 Summary
In summary, TSP represents a challenging optimization problem with widespread applications

and continuous research efforts aimed at developing efficient algorithms and solving practical

instances effectively.

7.5 Keywords

 Travelling Salesman Problem (TSP)

 Combinatorial Optimization

 Operations Research

 Mathematical Formulation

 Exact Algorithms

7.6 Self Assessment Questions
1. What is the objective of the Travelling Salesman Problem?

2. How is the Travelling Salesman Problem formulated mathematically?

3. Name one exact algorithm used to solve the Travelling Salesman Problem.

4. What is the complexity class of the Travelling Salesman Problem?

5. Provide an example of a heuristic algorithm used to approximate solutions for TSP.

6. What are some real-world applications of the Travelling Salesman Problem?

7. What  are  the  challenges  associated  with  solving  large  instances  of  the  Travelling

Salesman Problem?

8. How does the complexity of the Travelling Salesman Problem scale with the number of

cities?
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9. What interdisciplinary fields often collaborate to address challenges related to TSP?

10. What  are  some optimization  software  tools  commonly  used  to  solve  the  Travelling

Salesman Problem?

7.7 Case Study
A courier company operates a fleet of delivery vehicles to transport parcels between multiple

locations within a city. The company aims to minimize travel time and fuel costs by optimizing

the routes  taken by its  vehicles.  This case study demonstrates how the Travelling Salesman

Problem (TSP) can be applied to optimize delivery routes efficiently.

Objectives:

Minimize Travel Distance: Develop optimal routes for delivery vehicles to minimize the total

distance travelled while visiting all delivery locations exactly once.

Maximize  Efficiency:  Improve  operational  efficiency  by  reducing  travel  time  and  fuel

consumption for delivery vehicles.

Ensure  Timely  Deliveries:  Ensure  timely  deliveries  to  customers  by  optimizing  routes  to

minimize delays and maximize vehicle utilization.

Adaptability: Design routes that can adapt to changes in delivery demand, traffic conditions, and

vehicle availability throughout the day.

Cost Reduction: Reduce operational costs associated with vehicle maintenance, fuel expenses,

and driver hours by optimizing delivery routes.

7.8 References
1. Applegate, D. L., Bixby, R. E.,  Chvátal,  V., & Cook, W. J.  (2006). The Travelling

Salesman Problem: A Computational Study. Princeton University Press.

2. Lawler,  E.  L.,  Lenstra,  J.  K.,  RinnooyKan, A. H. G.,  &Shmoys,  D. B. (1985).  The

Travelling Salesman Problem. Wiley.
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UNIT - 8 

Transportation Models

Learning objectives

 Identify the key components of transportation models, including sources, destinations,

supply, demand, and transportation costs.

 Formulate  transportation  problems  as  linear  programming  models,  considering

constraints on supply and demand, as well as transportation costs.

 Perform sensitivity analysis to evaluate the impact of changes in supply, demand, and

transportation costs on the optimal solution.

Structure
8.1 Mathematical Formulation

8.2 Initial Basic Feasible Solution

8.3 Degeneracy and Unbalanced Problems

8.4 Summary

8.5 Keywords

8.6 Self Assessment Questions

8.7 Case Study

8.8 References
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8.1 Mathematical Formulation
Transportation problems belong to a unique family of linear programming problems where the

goal  is  to  satisfy supply constraints  and demand requirements while  minimizing the cost  of

moving  a  product  from  multiple  sources  (like  factories)  to  multiple  destinations  (like

warehouses). In addition to the direct transportation of a good, other domains that can be covered

by the transportation model are inventory management, staff assignment, and work scheduling. 

There are other variables and restrictions in the problem. Therefore, the simplex method cannot

be used to solve such a problem. This is the reason why solving the transportation problem

requires a unique computational process. 

The basic mathematical formulation:

Parameters:𝑚: Number of suppliers (sources).𝑛: Number of demand locations (destinations).𝑐: Cost of shipping one unit from supplier 𝑖 to destination 𝑗.𝑠𝑖 Supply available at supplier 𝑖.
: Demand at destination 𝑗.

Decision Variables:𝑥: Quantity of goods shipped from supplier 𝑖 to destination 𝑗.

Objective Function:

Minimize the total transportation cost:

Minimize

 Constraints:
Supply constraint: Ensure that the total quantity shipped from each supplier does not exceed its

supply capacity.

Demand constraint: Ensure that the total quantity received at each destination meets its demand.
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Non-negativity constraint: Ensure that the quantities shipped are non-negative.

Explanation:
The  goal  of  the  objective  function  is  to  minimize  the  total  cost,  which  is  calculated  by

multiplying  the  quantity  delivered  by  the  total  cost  of  shipping  from  each  source  to  each

destination.  

The supply restriction makes sure that each supplier's overall shipment volume stays within its

supply capacity.

The demand constraint makes sure that  each destination's total  quantity received satisfies its

demand.  

The amounts sent are guaranteed to be non-negative by the non-negativity criterion.

This  formulation  allows  for  solving  the  transportation  problem  using  various  optimization

techniques,  such  as  the  simplex  method,  transportation  simplex  method,  or  specialized

algorithms  like  the  North-West  Corner  Method,  Vogel's  Approximation  Method,  or  the

Minimum Cost Method.

8.2 Initial Basic Feasible Solution
In the transportation problem, finding an initial  basic  feasible  solution (IBFS) is  crucial  for

starting iterative optimization algorithms like the transportation simplex method. Here are a few

methods to obtain an IBFS:

1. North-West Corner Method:

This method starts by allocating shipments from the top-left (North-West) corner of the cost

matrix and iterates through each cell by moving South or East, prioritizing the cell with the

smallest supply or demand.

2. Minimum Cost Method (or Least Cost Method):

This method selects the cell with the smallest transportation cost and allocates shipments until

either the supply or demand of the corresponding row or column is exhausted.

3. Vogel's Approximation Method (VAM):
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Vogel's method finds the difference between the two smallest costs in each row and each column

and selects the largest  difference.  Then, it  allocates shipments in the corresponding cell  and

adjusts the supply and demand accordingly.

Top of Form
Transportation Algorithm:-The simplex algorithm and the transportation algorithm have identical

steps, which are as follows:

Step 1: Using any one of the following three techniques, identify a simple, workable solution

1. The North West Corner Approach 

2. The Lowest Possible Cost Approach 

3. The Vogel Approximation Technique 

Step 2: Apply the following approach to find the best answer. 

1. The UV Method or MODI (Modified Distribution Method). 

One of the following three approaches can be used to secure a non-artificial fundamental viable

solution due to the unique nature of the transportation problem.

 North West Corner Method (NWCM)

 Least Cost Method (LCM)

 Vogel Approximation Method (VAM)

The quality of the first basic viable solution produced by each of these three approaches varies,

with  a  better  initial  solution  producing  a  smaller  objective  value.  

Though the North West Corner Method requires fewer computations, it typically yields the worst

first basic viable solution, whereas the Vogel Approximation Method produces the best. 

North West Corner Method:
Example 1:
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To demonstrate how to apply the North West Corner Method for identifying a basic workable

solution, let's look at the problem presented in Example 1.1.

Solution:

The  arrows  indicate  the  generation  sequence  of  the  allotted  (bolded)  quantities.  The  initial

fundamental solution is provided as

Least Cost Method:
Since we seek out the row and column that correspond to the value of Cij that is minimum, the

LCM  is  sometimes  referred  to  as  the  matrix  minimum  technique.

The cheapest paths are the focus of this  strategy, which finds a superior initial  fundamental

workable answer. As in the NWC-Method, we begin the allocation by giving as greatly as we

can to the cell with the lowestone cost rather than beginning with the northwest cell. We ought to
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choose the row and the column if there are two or more minimum expenses. being in line with

the row with the lower number. 

Only one of the arrows and the column is crossed out if they are satisfied at the same time. Once

we have exactly one uncrossed-out row or column at the end, we search for the uncrossed-out

cell with the lowest unit cost and repeat the process. 

Example 2:
Determine the initial basic feasible solution using Least Cost Method Problem

Solution:

In order for the LCM's fundamental workable solution to have a transportation cost,

1x50+ 12x60+ 1x40+ 14x50+ 1x50+ 23x50= 2710
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Vogel Approximation Method (VAM):

The least cost approach has been enhanced by VAM, which typically yields superior results. The

procedure in this approach is:

Example 3:
Solve the following transportation problem

Solution:
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 Cost =22x40+ 4x80+ 9x30+ 7x30+ 24x10+ 32x50= Rs.3520

MODI Method:
The u-v strategy, normally known as the MODI technique or the Altered Dissemination method,

offers an ideal arrangement at the most minimal conceivable expense for the transportation issue.

Question:  Solve the transportation problem and optimize the solution. 

Solution:-
Hint: Finding the most fundamentally workable answer must come first. The simplest workable

solution that applies the least-cost strategy is 

8.3 Degeneracy and Unbalanced Problems
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 Unbalanced transportation problems occur when the total supply and demand are not equal.  

If the overall supply exceeds the total demand in the unbalanced transportation problem, we add

an  extra  column  to  show  the  excess  supply  with  zero  transportation  cost.

Likewise, in the event that the aggregate demand surpasses the aggregate supply, a new row is

appended to the transportation table, signifying unfulfilled demand at no cost of transportation.

Example 4 :
Evaluate the solution of unbalanced transportation problem given below as 

Solution: -
 Hint: In this situation, there is 900 total supply and 1300 total demand. To represent the unmet

demand, we will now add a new row with zero transportation cost.

Degenerate Transportation Problem:-
Degeneracy in a Transportation Problem arises when the number of filled cells in the transportation table

(basic variables) is less than  m+n−1, where  m is the number of supply points and  n is the number of

demand points.

Exercise:
1. In a transportation problem, what do you mean by degeneracy? 

2. Provide a mathematical solution to the transportation problem. 
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3. Apply Vogel's approximation technique to derive a transportation problem's first undamentally

workable solution and then identify the best one. 

8.4 Summary
Transportation models play a  crucial  role  in  optimizing transportation operations,  improving

efficiency,  reducing  costs,  and  enhancing  sustainability  in  logistics  and  supply  chain

management.

8.5 Keywords

 Transportation models

 Linear programming

 Optimization

 Logistics

 Supply chain management

8.6 Self  Assessment  Questions
1. What is the primary objective of transportation models in operations research?

2. How are transportation problems formulated mathematically?

3. Name one optimization technique used to solve transportation models.

4. What is the purpose of sensitivity analysis in transportation modeling?

5. Provide an example of a real-world application of transportation models.

6. How do transportation models contribute to supply chain management?

7. What types of constraints are typically included in transportation models?

8. What software tools are commonly used to solve transportation problems?

9. Explain the significance of decision support systems in transportation modeling.

10. What emerging trends are influencing the development of transportation models?

8.7 Case Study
Urban freight transportation plays a crucial role in supplying goods to businesses and consumers

in densely populated areas. However, it also poses significant challenges related to congestion,
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pollution, and inefficiency. This case study illustrates how transportation models can be applied

to optimize urban freight transportation.

Objectives:  Minimize  Transportation  Costs:  Develop  a  transportation  plan  that  minimizes

transportation costs for delivering goods within urban areas.

8.8 References
1. Geoffrion, A. M., & Graves, G. W. (1974). Multicommodity distribution system design

by benders decomposition. Management Science, 20(5), 822-844.

2. Ballou, R. H., &Pazer, H. L. (1985). Modeling the costs of urban freight distribution.

Transportation Science, 19(4), 362-383.
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UNIT - 9 
Advanced Game Theory

Learning objectives

 Explores equilibrium concepts such as sub game perfect equilibrium, Bayesian Nash

equilibrium, and evolutionary stable strategies.

 Analyzes  strategic  interactions  involving  sequential  decision-making  and  timing

considerations.

 Investigates solution concepts like the core, Shapley value, and bargaining solutions.

Structure
9.1  Introduction to Game Theory

9.2 Nash Equilibrium

9.3 Mixed Strategy Equilibrium

9.4 Summary

9.5 Keywords

9.6 Self Assessment questions

9.7 Case Study

9.8 References
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9.1 Introduction to Game Theory
The different definition of games is given by 

“Game theory,  more properly the theory of  games of strategy, is  a  mathematical  method of

analyzing a conflict. The alternative is not between this decision or that decision, but between

this strategy or that strategy to be used against the conflicting interest”.

 “Game theory is a mathematical technique helpful in making decisions in situations of conflicts,

where the success of one part depends at the expense of others, and where the individual decision

maker is not in complete control of the factors influencing the outcome”.

 “The ‘Game’ is simply the totality of the rules which describe it. Every particular instance at

which the game is played – in a particular way – from beginning to end is a ‘play’. The game

consists of a sequence of moves, and the play of a sequence of choices”.

 “A game is a competitive situation where two or more persons pursue their own interests and no

person can dictate the outcome. Each player, an entity with the same interests, make his own

decisions. A player can be an individual or a group”.

Game theory aids in determining a company's optimal course of action in light of predicted

countermoves  from rival  companies.  If  the  following  characteristics  are  true,  a  competitive

scenario is a competitive game:

1. Let's imagine there are a finite number of competitors, N. 

2. Each of the N contestants has a limited number of options for how to proceed. 

3. Each contestant chooses a plan of action from the options presented to him, and this 
results in a play of the game. The idea that each player chooses their course of action 
simultaneously is crucial to game theory. Consequently, no rival will be in a position to 
ascertain the decisions made by his rivals. 

4. A play's conclusion is determined by the specific actions that each participant does. Every

possible result has an associated set of payments, one for each player, and might be zero, 

negative, or positive. 

Saddle point:
  A seat point in a game is the area in the prize framework where the base of the section maxima

and the limit of the column minima are equivalent. The worth of the game is the result at the seat

point, and the matching strategies are known as the unadulterated methodologies.

88



Strength:  Something like  one of  the excess  players'  procedures  might  be better  than one of

different players'. It is said that the better methodologies offset the more terrible ones.

Types of Games:
Games for two players and several players: There are precisely two participants in two-player

games, and each player can only use a limited number of methods. A game is referred to as an n-

person game if there are more players than two.

Zero sum and non-zero sum games: A game is referred to as a zero sum game if the total

amount of payments made to all players for every possible result in the game is zero. A game is

referred to as a non-zero sum game if the total payoffs from every play are positive or negative

but not zero.

There are two types of games:  perfect information games and imperfect information games. In

a perfect information game, every player knows the opponent's plan.  However,  a game with

imperfect information is one in which a player can only move forward in his game by making

educated guesses about the opponent's strategy because no player can predict it beforehand.

Games for a limited number of players or moves, as well as games with an infinite number of

moves: A game in which each player's number of moves is set before the play begins is known

as a finite number of moves game. Conversely, we refer to a game as having an infinite number

of moves if it may be played for a long time and there are no restrictions on how many moves

any player can make..

Constant-sum games: We refer to a game as constant-sum if the total of the payouts to both

players in each scenario is constant but the game's sum is not zero.

9.2 Nash Equilibrium
The main idea in game theory is called Nash Equilibrium, after the mathematician and Nobel

laureate John Nash. In a strategic encounter, it denotes a situation in which no player has any

motivation to unilaterally alter their approach.

Formal Definition:  In a game with 𝑁 players, where each player  𝑖 has a strategy set  𝑆𝑖 and

utility function 𝑢𝑖(𝑠1,𝑠2,...,𝑠𝑁), a Nash Equilibrium is a set of strategies (𝑠1∗,𝑠2∗,...,𝑠𝑁∗)

such that for each player 𝑖:
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for all 𝑠1 in 𝑆1, and similarly for all other players 𝑗.

Characteristics:
Stability: In  a  Nash  Equilibrium,  no  player  can  improve  their  outcome  by  changing  their

strategy unilaterally.

Mutual Best Response:  Every player's strategy is their  best reaction to every other player's

selected plan.

No Regret: Players have no regret for choosing their  strategies once a Nash Equilibrium is

reached.

Applications:

 Nash Equilibrium is widely used in economics, political science, biology, and other fields

to analyze strategic interactions.

 It helps in understanding the behaviour of firms in markets, negotiation strategies, and

even evolutionary stability in biological systems.

In summary,  Nash Equilibrium is  a  fundamental  concept  that  provides  insight  into strategic

decision-making in competitive situations where each actor's decision affects others' outcomes.

9.3  Mixed Strategy Equilibrium
Mixed Strategy Equilibrium is a concept in game theory where players, instead of choosing a

single pure strategy, choose a probability distribution over their possible pure strategies. In a

mixed  strategy  equilibrium,  each  player's  strategy  because  considering  the  other  players'

strategies, no player has an incentive to unilaterally stray from their selected course of action.

Characteristics:
Randomized Strategies: Players randomize their choices based on probability distributions over

their pure strategies.
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No  Dominant  Strategy:Regardless  of  the  strategies  used  by  other  players,  there  isn't  a

dominating method among them that offers a larger payout.

Expected Utility Maximization: Players maximize their expected utility given the strategies of

the other players.

Example 1:
Imagine a straightforward penny matching game in which Player 1 selects heads (H) or tails (T)

at the same time as Player 2 does the same. Player 1 earns $1 if both players match—that is, if

both select H or T—and Player 2 wins $1 if not.

In this game, neither player has a dominant strategy. Therefore, a mixed strategy equilibrium can

be  achieved  where  both  players  randomize  their  choices  with  equal  probability:𝑝1(𝐻)=𝑝2(𝐻)=𝑝 and 𝑝1(𝑇)=𝑝2(𝑇)=1−𝑝. In this equilibrium, neither player has an incentive

to deviate from their strategy because changing their probability distribution would not improve

their expected payoff.

Applications:
Mixed strategy equilibria are used to analyze complex games where pure strategies alone may

not capture the strategic interactions effectively.

They are applied in various fields such as economics, political science, biology, and evolutionary

game theory to model behaviour in uncertain or strategic environments.

9.4 Summary
Advanced Game Theory provides a sophisticated framework for understanding and analyzing

strategic  interactions  in  complex,  dynamic  environments.  By  exploring  advanced  concepts,

techniques, and applications, researchers can tackle diverse challenges and contribute to cutting-

edge research at the intersection of economics, computer science, and other disciplines.

9.5 Keywords

 Equilibrium concepts

 Subgame perfect equilibrium

 Bayesian Nash equilibrium

 Evolutionary stable strategies
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 Dynamic games

9.6 Self AssessmentQuestions
1. What are some equilibrium concepts beyond Nash equilibrium?

2. How do dynamic games differ from static games in game theory?

3. What is the significance of subgame perfect equilibrium in sequential decision-making?

4. How does cooperative game theory differ from non-cooperative game theory?

5. What are some solution concepts used in cooperative game theory?

6. What is the role of algorithmic game theory in addressing computational complexity in

strategic interactions?

7. How are empirical methods used to validate theoretical predictions in game theory?

8. What  are  some  applications  of  game  theory  in  multi-agent  systems  and  artificial

intelligence?

9. How does strategic reasoning contribute to decision-making in complex environments?

10. What interdisciplinary applications does game theory have in fields such as economics,

computer science, and political science?

9.7 Case Study
Governments often allocate radio frequency spectrum to telecommunications companies through

auctions.  However,  designing auctions that  encourage competitive bidding while maximizing

revenue presents challenges.  This case study demonstrates the application of advanced game

theory concepts in designing spectrum auctions.

Objectives:Maximize  Revenue:  Design  an  auction  mechanism  that  maximizes  government

revenue from spectrum allocation.

9.8 References
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UNIT - 10

Game Problems using Graphical Method

Learning Objectives

 Define the fundamental concepts of game theory, including players, strategies, payoffs,

and equilibrium.

 Learn how to represent game problems graphically using payoff matrices or strategic

form games.

 Develop skills  to  solve  game problems using graphical  methods,  including iterative

elimination of dominated strategies and graphical inspection of payoff matrices.

Structure
10.1  Graphical Solution Techniques

10.2  Application in Various Scenarios

10.3 Summary

10.4 Keywords

10.5Self AssessmentQuestions

10.6 Case Study

10.7 References
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10.1  Graphical Solution Techniques
The graphical method is often used to solve two-player, zero-sum games, particularly those with

a finite number of strategies for each player. In this method, a graphical representation called a

payoff  matrix  is  constructed,  for  every cell  represents  the payoff  to  the  row player  and the

negative of the payoff to the col. player. 

Graphical solution techniques are often used to analyze and solve two-player, zero-sum games,

particularly those with a small number of strategies for each player. These techniques provide a

visual representation of the game's payoff structure and help identify optimal strategies for both

players. Here are some graphical solution techniques commonly used:

1. Payoff Matrix:

2. Graphical Representation:
Make a  grid  with  rows  standing  for  the  strategies  of  the  row players  and columns  for  the

strategies of the column players.  Plot the payoffs from the payoff matrix in the corresponding

cells.

3. Dominance Analysis:
Determine which player's dominated strategies are. When one method consistently yields a larger

reward than the opponent's strategy, it is said to be dominated. 

Take dominated strategies out of the equation.

4. Optimal Strategy Identification:
For the row player,  identify the maximum payoff in each row and choose the row with the

highest maximum payoff.
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For the column player, identify the minimum payoff in each column and choose the column with

the lowest minimum payoff.

5. Graphical Solution:
Once dominated strategies are eliminated and optimal strategies are identified, mark the optimal

strategies on the graphical representation.

The intersection of the optimal strategies indicates the optimal outcome of the game.

6. Interpretation:
Interpret the result in the context of the game. The optimal outcome represents the best response

for both players given the available strategies.

Here's how you can approach solving game problems using the graphical method:

Steps:
Construct the Payoff Matrix:
Identify the strategies available to each player.

Fill in the payoffs for each combination of strategies, where the row player's payoff is positive

and the column player's payoff is negative.

Plot the Payoff Matrix:
Make a grid with the strategies for the row player represented by the rows and the column player

by the columns. Plot the payoffs from the payoff matrix in the corresponding cells.

Find the Optimal Strategy:
If there are no dominated strategies, find the optimal strategy for each player.

For the row player,  identify the maximum payoff in each row and choose the row with the

highest maximum payoff.

For the column player, identify the minimum payoff in each column and choose the column with

the lowest minimum payoff.

Interpret the Result:
Once the optimal strategies are identified, interpret the result in the context of the game.

Example 1:
Consider the following payoff matrix for a simple game:
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Construct the Payoff Matrix:
Fill in the payoffs for each combination of strategies.

Plot the Payoff Matrix:
Draw a grid and plot the payoffs in the corresponding cells.

Identify Dominance:
Look for any dominated strategies for each player.

Find the Optimal Strategy:
Identify the maximum payoff in each row and the minimum payoff in each column.

Choose the row with the highest maximum payoff).

Choose the column with the lowest minimum payoff.

Interpret the Result:
This process allows you to systematically analyze and solve game problems using the graphical

method, providing insights into optimal strategies and payoffs for each player.

10.2 Application in Various Scenarios
Graphical  solution techniques  in  game theory have wide-ranging applications across  various

scenarios,  including  economics,  business,  politics,  and  social  interactions.  Here  are  some

examples of how these techniques are applied in different contexts:

1. Economics:

 Market Competition: Analyzing strategies of firms in oligopolistic markets to determine

optimal pricing and output decisions.

 Resource Allocation: Evaluating bidding strategies in auctions to maximize utility or

profit.

 Labor  Negotiations: Studying  wage  bargaining  between  labor  unions  and  firms  to

understand optimal negotiation strategies.

2. Business Strategy:

 Product Positioning: Determining optimal product positioning strategies by analyzing

competitive interactions and consumer preferences.
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 Advertising and Promotion: Assessing the effectiveness of advertising and promotional

strategies by modelling competitive advertising games.

 Strategic Alliances: Analyzing strategic alliances and partnerships to identify optimal

collaboration strategies in competitive markets.

3. Politics and International Relations:

 Negotiation and Diplomacy: Understanding strategic interactions between countries in

international relations to analyze negotiation and conflict resolution strategies.

 Election Campaigns: Modeling electoral competition between political parties to study

campaign strategies and voter behaviour.

 Policy Making: Analyzing policy decisions and their impact on various stakeholders to

inform optimal policy choices.

4. Social Interactions:

 Network Formation: Studying the formation of social networks and the evolution of

cooperation and competition within networks.

 Peer  Influence: Analyzing  peer  effects  and  social  influence  in  decision-making

processes, such as adoption of new technologies or behaviours.

 Resource  Sharing: Examining  cooperative  behaviours  and  strategies  for  resource

sharing in social dilemmas, such as the tragedy of the commons.

5. Sports and Games:

 Sports Strategy: Evaluating game strategies in sports competitions, such as soccer or

basketball, to optimize player positions and tactics.

 Board Games: Analyzing optimal strategies in board games like chess, poker, or tic-tac-

toe to improve game play and decision-making.

Graphical solution techniques provide a powerful framework for analyzing strategic interactions

and  decision-making  in  diverse  scenarios.  By  visualizing  payoff  structures  and  identifying

optimal strategies, these techniques help individuals and organizations to make better decisions

and achieve better outcomes in competitive environments.
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10.3 Summary
Graphical  methods  offer  a  powerful  tool  for  analyzing  game  problems,  providing  a  visual

framework for understanding strategic interactions, identifying optimal strategies, and predicting

equilibrium  outcomes.  By  leveraging  graphical  representations,  decision-makers  can  make

informed strategic choices and navigate complex decision environments effectively.

10.4 Keywords

 Game theory

 Strategic interactions

 Players

 Strategies

 Payoffs

10.5 Self Assessment Questions
1. What is the primary goal of using graphical methods in analyzing game problems?

2. Define dominance in the context of game theory.

3. How are best responses identified graphically in game problems?

4. What is a Nash equilibrium, and how is it located using graphical methods?

5. Explain the concept of mixed strategies in game theory.

6. How do graphical methods aid in identifying optimal strategies in game problems?

7. Describe  one  real-world  application  where  graphical  methods  are  used  to  analyze

strategic interactions.

8. What are the advantages of using graphical representations in solving game problems?

9. How does iterative elimination of dominated strategies contribute to finding equilibrium

outcomes?

10. What role does visualization play in understanding and interpreting solutions to game

problems?

10.6 Case Study
A retail  chain  operates  multiple  stores  in  a  competitive  market  where  pricing  decisions

directly  impact  profitability  and  market  share.  The  chain  wants  to  optimize  its  pricing
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strategy to maximize revenue while considering the reactions of competitors. This case study

demonstrates the use of game theory and graphical methods to analyze and optimize pricing

strategies.

Objectives: Maximize Revenue: Determine pricing strategies that maximize revenue for the

retail chain.

10.7 References
1. Osborne, M. J., & Rubinstein, A. (1994). A Course in Game Theory. MIT Press.

2. Binmore, K. (2007). Playing for Real: A Text on Game Theory. Oxford University Press.
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UNIT - 11 

Queuing Models

Learning objectives

 Define the basic components of queuing models, including arrival processes, service

processes, queue disciplines, and system capacity.

 Differentiate between various types of queuing models such as M/M/1, M/M/c, M/G/1,

G/G/1, and queuing networks.

 Develop simulation models to analyze complex queuing systems that cannot be solved

analytically.

Structure
11.1 Queuing Theory

11.2 Birth-Death Processes

11.3 Markovian Queuing Models

11.4 Summary 

11.5 Keywords

11.6 Self Assessment Questions

11.7 Case Study

11.8 References
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11.1 Queuing Theory

Queuing theory is a significant area within operations research that focuses on the analysis of

waiting  lines  or  queues.  This  theory  is  widely  applicable  in  various  fields,  including

telecommunications, traffic engineering, computing, and the service industry, to optimize the

process and manage the flow of items or individuals through a system.

Here’s a basic overview of the key concepts and applications of queuing theory:

Key Concepts
1. Queue Components:

 Arrival Process:  Describes how customers arrive at the queue. Commonly

modeled as a Poisson process.

 Service Process: Describes how customers are served. Often modeled with

exponential service times.

 Number of Servers: The number of parallel service channels available.

 System Capacity:  The  maximum number of  customers that  can be in  the

system (both waiting and being served).

2. Performance Metrics:

 Average Waiting Time: The expected time a customer spends in the queue.

 Average Queue Length: The expected number of customers in the queue.

 Utilization Factor: The fraction of time servers are busy.

 Probability  of  n  Customers  in  the  System:  The  likelihood  of  having  a

specific number of customers in the system.

3. Common Queue Models:

 M/M/1: A single-server queue with Poisson arrivals and exponential service

times.

 M/M/c: A multi-server queue with Poisson arrivals and exponential service

times.
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 M/G/1: A single-server queue with Poisson arrivals and general service time

distribution.

 G/G/1:  A  single-server  queue  with  a  general  arrival  process  and  general

service time distribution.

Applications
1. Telecommunications: Managing data packets in a network, ensuring minimal delays and

efficient data transmission.

2. Healthcare: Scheduling patients in hospitals, optimizing staff allocation, and reducing

patient wait times.

3. Manufacturing:  Controlling  production  lines,  minimizing  downtime,  and  managing

inventory.

4. Service Industry: Managing customer service operations in banks, call centers, and retail

stores to reduce wait times and improve service efficiency.

5. Traffic Engineering: Optimizing traffic flow, reducing congestion, and improving signal

timings at intersections.

Fig 11.1.1 : Structure of Queuing Theory

11.2 Birth-Death Processes

Birth-death  processes  are  a  special  type  of  Markov  process  that  are  particularly  useful  in
modeling queuing systems. In these processes,  "births"  represent  arrivals  to the system, and
"deaths" represent departures from the system. This framework allows for a structured analysis
of queues where the state of the system changes due to these arrivals and departures.

Key Concepts of Birth-Death Processes

1. States: Represent the number of customers in the system.
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2. Transition Rates:

 Birth Rate (λn\lambda_nλn): The rate at which customers arrive when the system is in
state nnn.

 Death Rate (μn\mu_nμn): The rate at which customers are served and leave when the
system is in state nnn.

Common Birth-Death Queue Models

1. M/M/1 Queue

 Arrival Rate (λ\lambdaλ): Constant for all states.
 Service Rate (μ\muμ): Constant for all states.

Equilibrium Probabilities: The probability PnP_nPn of having nnn customers in the system is

given by:

Performance Metrics:

 Average number of customers in the system (L): 

 Average time a customer spends in the system (W): 

2. M/M/c Queue

 Arrival Rate (λ): Constant for all states.
 Service Rate (μ): Each of the c servers works at rate μ, so the total service rate depends 

on the number of customers n in the system.

Equilibrium Probabilities: The probability P0 that the system is empty is given by:

104



Performance Metrics:

 Average number of customers in the system (L ): 

 Average time a customer spends in the system (W): 
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11.3 Markovian Queuing Models

Markovian  queuing  models  are  a  subset  of  queuing  theory  where  the  arrival  and  service

processes follow an exponential distribution, which means they exhibit the memoryless property.

These models are described using Markov chains and are characterized by their simplicity and

analytical tractability. Here, we will discuss several common Markovian queuing models, their

characteristics, and how they are analyzed.

Common Markovian Queuing Models
1. M/M/1 Queue
2. M/M/c Queue
3. M/M/∞ Queue
4. M/M/c/K Queue
5. M/M/c/c Queue

1. M/M/1 Queue

Characteristics:
 Arrival Process: Poisson process with rate λ
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 Service Process: Exponential distribution with rate μ
 Number of Servers: 1
 System Capacity: Infinite

2. M/M/c Queue

Characteristics:
 Arrival Process: Poisson process with rate λ
 Service Process: Exponential distribution with rate μ
 Number of Servers: c
 System Capacity: Infinite

3. M/M/∞ Queue

Characteristics:
 Arrival Process: Poisson process with rate λ
 Service Process: Exponential distribution with rate μ
 Number of Servers: Infinite
 System Capacity: Infinite

4. M/M/c/K Queue

Characteristics:
 Arrival Process: Poisson process with rate λ
 Service Process: Exponential distribution with rate μ
 Number of Servers: c
 System Capacity: K (maximum number of customers in the system)

5. M/M/c/c Queue (Erlang B model)

Characteristics:
 Arrival Process: Poisson process with rate λ
 Service Process: Exponential distribution with rate μ
 Number of Servers: c
 System Capacity: c (no waiting space, customers are blocked if all servers are busy)

Question: Landings in a phone both are viewed as Poisson at a typical season of 8 min between

our appearance and the following. The length of the calls circulated dramatically, with 'a mean of

4 min, Decide:
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(a) Normal part of the day that the telephone will be being used.

(b) Expected number of units in the line Anticipated holding up time in the line.

(c) Anticipated number of units in the framework.

(e) Anticipated holding up time in the framework

(f) Expected number of units in line that now and again.

(g) What is the likelihood that an appearance should sit tight in line for administration?

(h) What is the likelihood that precisely 3 units are in framework

(1) What is the likelihood that an appearance won't need to sit tight in line for administration?

(j) What is the likelihood that there are at least 3 units in the framework?

(k) What is the likelihood that an appearance should stand by in excess of 6 min in line for

administration?

(l) What is the likelihood that in excess of 5 units in framework

(m) What is the likelihood that an appearance should stand by in excess of 8 min in framework?

(n)Telephone Organization will introduce a second corner when persuaded that an appearance

would have to hang tight for authenticate 6 min in line for telephone.

Solution:
The mean arrival rate λ

λ=1
8
X 60=7.5 per hour

The mean service rate (μ)

μ= 1
4
X60=15 perhour

(a) Fraction of the day that the phone will be in use

ρ= λ
μ
=7.5
15

=0.5

(b) The expected number of units in the queue

Lq=
λ2

μ(μ−λ)
= 7.52

15(15−7.5)

Lq=0.5 (Units) person

(c) Expected waiting time in the queue

108



W q=
Lq

λ
=0.5
7.5

=0.066 Hours

(d) Expected number of unit in the system

L=Lq+
λ
μ
=0.5+0.5=1 Person

(e) Expected waiting time in the system

W=W q+
1
μ
=0.066+ 1

15
=0.133

(f) Expected number of units in the queue that form from time to time

D= μ
μ−λ

= 15
15−7.5

= 15
7.5

=2 Person
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11.4 Summary
Queuing models provide valuable insights into system performance and behaviour, aiding in the

design, analysis, and optimization of various processes and systems. By understanding queuing

theory  and  applying  appropriate  models,  organizations  can  improve  efficiency,  customer

satisfaction, and resource utilization across a wide range of applications.

11.5 Keywords

 Queues

 Queuing theory
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 Arrival processes

 Service processes

 Queue disciplines

11.6 Self Assessment Questions
1. What is the primary purpose of queuing models?

2. Define the arrival process in queuing theory.

3. Explain the significance of service processes in queuing models.

4. Differentiate between the M/M/1 and M/M/c queuing models.

5. What is Little’s Law, and how is it applied in queuing theory?

6. What role does queuing theory play in optimizing resource allocation?

7. How does dynamic routing contribute to managing queues in computer networks?

8. Describe one real-world application where queuing models are used.

9. What are the main performance metrics used to evaluate queuing systems?

10. How can simulation software be beneficial in analyzing complex queuing systems?

11.7 Case Study
An international airport  faces challenges with long wait  times and congestion at  its  security

screening  checkpoints,  particularly  during  peak  travel  hours.  Passengers  often  experience

frustration and delays, impacting their overall travel experience. The airport authority aims to

optimize  the  security  screening  process  to  improve  efficiency  and  enhance  passenger

satisfaction.

1. Minimize average passenger wait time at security checkpoints.

2. Maximize throughput of passengers through security screening.

3. Optimize resource allocation, including staffing and equipment usage.

4. Maintain security standards while enhancing the passenger experience.

11.8 References
1. Kleinrock, L. (1975). Queuing Systems, Volume 1: Theory. Wiley-Interscience.

2. Gross, D., Shortle, J.  F.,  Thompson, J. M., & Harris, C. M. (2008). Fundamentals of

Queuing Theory (4th ed.). Wiley-Interscience.
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UNIT - 12 
Advanced Queuing Models

Learning objectives

 Understand the  basic  principles of  queuing theory,  including the concepts  of  queues,

servers, arrival processes, and service processes.

 Differentiate  between various  types  of  queuing systems (e.g.,  single-server  vs.  multi-

server, finite vs. infinite capacity).

 Understand the assumptions, limitations, and appropriate applications of each model.

Structure
12.1Queuing Networks

12.2 Multi-Server Systems

12.3 Queuing Theory in Practice

12.4 Summary

12.5 Keywords

12.6 Self-Assessment questions

12.7 Case Study

12.8 References
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12.1  Queuing Networks
M/G/1 Queuing Mechanisms There is a general distribution for service times. The remaining

M/M/1 presumptions are kept ramifications We are no longer able to depend on service times'

memory less feature. The number of customers at time t must be shown in each state if the state

transition diagram approach is to be used, and A(t) indicates the amount of time the customer has

been served by the server up until that point. Could you explain why M/M/ (N(t), A(t)), N(t)

doesn't require

Queuing networks are queuing systems composed of interconnected queues, where entities move

between queues based on predefined routing rules. These networks are used to model complex

systems with multiple stages of service, such as manufacturing processes, computer networks,

telecommunications systems, and service facilities like hospitals and banks. Here's an overview

of Queuing networks:

Components of Queuing Networks:
1. Nodes (Queues):

 Each node represents a queue where entities (such as customers, packets, or jobs)

wait for service.

 Queues may have different characteristics, such as arrival rates, service rates, and

queue capacities.

2. Servers:
 Servers are responsible for serving entities in the queues.

 Each queue may have one or more servers dedicated to providing service.

3. Routing Rules:
 Routing rules determine how entities move between queues in the network.

 Routing may be deterministic (fixed paths) or stochastic (probabilistic).

4. Network Topology:
 The arrangement  of  queues and connections  between them forms the network

topology.

 Queuing networks may have simple linear topologies or complex interconnected

structures.
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Types of Queuing Networks:
1. Jackson Networks:

 Jackson  networks  are  a  class  of  Queuing  networks  with  Poisson  arrivals,

exponential service times, and deterministic routing.

 Nodes in Jackson networks are interconnected, and entities move between nodes

according to predetermined routes.

2. BCMP Networks:
 BCMP  (Baskett,  Chandy,  Muntz,  Palacios)  networks  are  a  generalization  of

Jackson  networks  that  allow  for  more  complex  routing  and  service  time

distributions.

 BCMP  networks  can  model  non-exponential  service  times  and  more  flexible

routing options.

3. Closed and Open Networks:
 Closed Queuing networks have a fixed number of entities circulating within the

system, while open networks allow entities to enter and exit the system over time.

Performance Measures:
1. Throughput:

 The rate at which entities are processed by the network.

2. Utilization:
 The fraction of time servers are busy serving entities.

3. Queue Length:
 The average number of entities waiting in each queue.

4. Response Time:

 The mean duration of  an entity  within the system, encompassing waiting and

servicing times.

5. Blocking Probability:
 The  probability  that  an  entity  cannot  enter  a  queue  due  to  queue  capacity

constraints.
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Applications:
 Telecommunications  Networks: Modelling data  packet  routing in  computer  networks,

internet traffic management.

 Manufacturing  Systems: Analyzing  production  lines,  supply  chain  logistics,  and

inventory management.

 Service  Operations: Optimizing  service  facilities  such  as  hospitals,  call  centers,  and

banks.

Queuing networks provide a powerful framework for analyzing and optimizing complex systems

with multiple stages of service.  By studying the behaviour of entities as they move through

interconnected  queues,  decision-makers  can  gain  insights  into  system performance,  resource

allocation,  and  bottlenecks,  leading  to  more  efficient  operations  and  improved  customer

satisfaction.

12.2 Multi-Server Systems
Multi-server  systems  are  queuing  systems  where  multiple  servers  are  available  to  serve

customers  or  entities.  These  systems  are  widely  used  in  various  applications,  including

telecommunications,  computer  networks,  service  operations,  and  manufacturing.  Here's  an

overview of multi-server systems:

Characteristics:
1. Number of Servers:

 Multi-server systems have more than one server available to provide service to

customers.

 The number of servers (𝐶) can vary based on system requirements and capacity.

2. Service Process:
 Servers in multi-server systems may operate independently or collaboratively to

serve customers.

 Service times may follow various distributions, such as exponential, deterministic,

or general distributions.

3. Queuing Discipline:

 Each server may have its queue or share a common queue with other servers.
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 Queuing disciplines describe the order in which clients are served, such as first-

come-first-served, priority-based, or shortest-job-next.

4. Routing Rules:
 Multi-server systems may have fixed or dynamic routing rules that determine how

customers are assigned to servers.

 Routing rules can optimize system performance by balancing the workload across

servers.

Performance Measures:

1. Utilization (𝜌):

 The average fraction of time servers are busy serving customers.

 Calculated as  𝜌=𝜆𝐶⋅ , where 𝜆 is the arrival rate and 𝜇 is the service rate per

server.

2. Queue Length:
 The average number of customers waiting in the queue.

 Queue length depends on the number of servers, arrival rate, service rate, and

queue capacity.

3. Waiting Time:
 The typical amount of time patrons must wait in line before receiving service.

 Waiting time is affected by system load, arrival rate, service rate, and Queuing

discipline.

4. Response Time:
 The average time clienteles spend in the scheme, including service and waiting

time.

 Response time is influenced by Queuing discipline, service time distribution, and

system load.

Strategies for Optimization:
1. Load Balancing:

 Distributing customer arrivals evenly across servers to balance the workload and

reduce Queuing delays.
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2. Dynamic Routing:
 Dynamically assigning customers to servers based on current server loads and

customer characteristics.

3. Server Synchronization:
 Synchronizing  the  service  processes  of  multiple  servers  to  optimize  resource

utilization and minimize idle time.

4. Queue Management:
 Implementing effective Queuing disciplines and capacity planning strategies to

minimize queue lengths and waiting times.

Applications:
 Telecommunications Networks: Call centers, data centers, and internet service providers.

 Service Operations: Hospitals, banks, airports, and customer service centers.

 Manufacturing Systems: Assembly lines, production facilities, and supply chain logistics.

Multi-server systems play a crucial role in various industries, providing efficient and reliable

service  to  customers  while  optimizing  resource  utilization  and  operational  efficiency.  By

understanding  the  characteristics  and  performance  measures  of  multi-server  systems,

organizations can design and manage queuing systems that meet their service level objectives

and customer demands.

12.3 Queuing Theory in Practice
Queuing theory is widely applied in practice across various industries and domains to analyze,

design,  and  optimize  systems  involving  waiting  lines  or  queues.  Here  are  some  common

applications of Queuing theory in practice:

1. Telecommunications Networks:
 Call  Centers:  Queuing theory helps  optimize call  center  operations  by analyzing call

arrival patterns, staffing requirements, and service levels.

 Data  Networks: It  is  used  to  design  and  manage  data  networks,  including  routers,

switches, and packet-switched networks, to minimize packet loss and latency.
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2. Service Operations:
 Healthcare:  Queuing theory is applied in hospitals and clinics to optimize patient flow,

reduce waiting times, and allocate resources efficiently.

 Retail: It  helps retailers  manage checkout  lines,  staffing levels,  and customer service

operations to enhance customer satisfaction.

 Transportation:  Queuing theory is used in transportation systems such as airports, train

stations, and bus terminals to manage passenger flows and minimize congestion.

3. Manufacturing and Supply Chain:
 Production Systems: It is applied in manufacturing facilities to optimize production lines,

inventory management, and material handling processes.

 Supply Chain Logistics: Queuing theory helps optimize distribution centers, warehouses,

and logistics networks to streamline order full filament and reduce lead times.

4. Computer Systems and Networks:
 Computer Networks: It is used to analyze and optimize network performance, including

packet-switched networks, cloud computing systems, and content delivery networks.

 Operating Systems:  Queuing theory helps optimize resource allocation and scheduling

algorithms in operating systems to improve system throughput and response times.

5. Retail and Customer Service:
 Supermarkets: It helps supermarkets and retail stores optimize checkout processes, queue

management,  and  staffing  levels  to  reduce  waiting  times  and  improve  customer

satisfaction.

 Banking:  Queuing  theory  is  applied  in  banks  and  financial  institutions  to  manage

customer queues, service times, and teller staffing levels to enhance customer service.

6. Traffic Engineering:
 Road Traffic: It is used to analyze traffic flows, congestion patterns, and traffic signal

timings to optimize traffic management and reduce travel times.

 Public Transportation:  Queuing theory helps optimize bus routes, train schedules, and

passenger boarding processes to improve public transportation efficiency.

7. Emergency Services:
 Emergency Departments: It is applied in hospitals'  emergency departments to manage

patient triage, resource allocation, and treatment processes during peak demand periods.
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 Emergency  Call  Centres:  Queuing  theory  helps  optimize  emergency  call  routing,

dispatcher allocation, and response times in emergency call centres.

Queuing  theory  provides  valuable  insights  and  tools  for  analyzing  and  improving  the

performance  of  systems  involving  waiting  lines  or  queues.  By  applying  Queuing  theory

principles  and  techniques,  organizations  can  enhance  efficiency,  reduce  costs,  and  improve

customer service in various real-world applications.

12.4 Summary
In summary, Advanced Queuing Models equip individuals with the analytical and practical skills

needed to  understand,  design,  and optimize  complex queuing  systems in  various  real-world

applications, driving efficiency and performance improvements.

12.5 Keywords

 Arrival Rate (λ)

 Service Rate (μ)

 Queue Discipline

 Traffic Intensity (ρ)

 Little's Law

12.6 Self-Assessment questions
1. What is Little's Law in queuing theory?

2. How does an M/M/1 queue differ from an M/M/c queue?

3. What role does the Poisson process play in queuing models?

4. Explain the concept of traffic intensity (ρ) and its significance.

5. What is the primary difference between M/G/1 and G/G/1 queuing models?

6. Describe a scenario where a queuing network might be used.

7. What is meant by the term "queue discipline"? Give an example.

8. How can simulation be used in analyzing complex queuing systems?

9. What are heavy traffic approximations, and when are they used?
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10. What optimization techniques can be applied to improve the performance of a queuing

system?

12.7 Case Study
A major metropolitan bank faces significant customer service challenges during peak

hours. Customers experience long wait times, leading to dissatisfaction and potential loss

of  clientele.  The  bank  has  multiple  service  counters  but  struggles  with  effectively

managing customer flow and service efficiency.

1. Reduce average customer wait time.

2. Improve customer satisfaction.

3. Optimize resource allocation (e.g., the number of tellers).

4. Implement a system for better queue management during peak hours.

12.8 References
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